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1 Introduction

The CompTools package (Compiler Construction Tools) is composed of three modules developed to: (1) build
a lexical analyzer (LexGen), (2) build an LL(1) grammar interpreter (CompGen), and (3) draw syntax diagrams
corresponding to a grammar or a lexicon (DiagGen).

In order to understand how the software works, we first need to explain some computer language concepts. A
language is defined by three elements: the lexicon, the syntax, and the semantics. The lexicon is the set of all the
words and symbols used by the language. The syntax describes how to arrange the lexicon elements to produce
phrases. The semantics define what the phrases mean. Hence, a meaningful phrase will obey all the semantic and
syntactic rules, and will only contain words available in the lexicon.

We need to analyze a phrase to determine its meaning. The analysis is performed using (1) a lexical analyzer,
which will detect the words on the input stream, (2) a syntactic analyzer, which will validate the syntax of the
phrase, and (3) a semantics analyzer, used to determine the meaning of the phrase and detect any invalid use of the
language that might be allowed by the syntax, but have no meaning (e.g., My dog Spot is air).

We distinguish two types of words: literals and lexical constructs. Literals represent actual words. In most
computer languages, literals are reserved words; e.g., in C, for, while, ==, !=, etc. Hence, a literal is a series of
characters that must be matched exactly in a phrase. On the other hand, lexical constructs represent classes of words
or symbols that match a certain pattern; e.g., an integer or a variable identifier. We represent the pattern defining
a lexical construct with a regular expression.

The literals and the lexical constructs are used when defining the syntax of the language. However, these two
elements are not sufficient, because they do not allow for very complex languages. We complement the literals and
the lexical constructs with categories. A category is a syntax rule, defined by a regular expression that can include
literals, lexical constructs, and categories, hence allowing for recursive definition of the language.

2 The Lexical Analyzer Builder: LexGen

The goal of a lexical analyzer is to recognize literals and lexical constructs on the input stream. How does it work?
The lexical analyzer is actually a deterministic finite state automaton (FSA) that reads the input stream and moves
from state to state. As it moves through the FSA, it stacks up the different states it encounters until it reaches an
invalid state. Then, based on a list of expected literals and lexical constructs, it determines the largest literal or
lexical construct matched in the list of expected symbols in the current context.

The LexGen module builds a FSA to recongnize a lexicon, either in C or Java. In C, it builds (1) a C file
containing the routines to use the FSA, i.e., the lexical analyzer routines, (2) C files containing the description of the
FSA, (3) a C header file containing the declarations of the variables used to describe the FSA, and (4) a C header file
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containing the information needed by other programs using the lexical analyzer. In Java, it builds (1) a Java class
that implements the routines to use the FSA, i.e., the lexical analyzer routines, (2) a Java class that implements
the FSA tables, specific to the current language, (3) a Java interface declaring lexical tokens common to all lexical
analyzers, and (4) a Java interface declaring lexical tokens specific to the current language.

The FSA generated is usually optimized to reduce its size; the optimization step can be skipped when building
the FSA. A debug option generates a trace within the lexical analyzer routine. In C, the lexical analyzer can be
built to read from a file (FILE *) or from a character string (char **). In Java, this issue is resolved by using a
BufferedReader object as the input to the lexical analyzer. Hence, any input format that can be converted to
a BufferedReader may be used. The way LexGen is designed, the creation of the lexical analyzer routines and
declarations is optional. It might occur in certain situations that the same program uses more than one language.
Yet, only one set of lexical analyzer routines is needed to process both languages.

2.1 Segmenting the Lexical Analyzer Tables in C

The size of the lexical analyzer table produced may be quite large. In fact, the data structures produced might
extend over the segment size limits, especially on small computers. To avoid this problem, the $segment operator
can be used. It defines the size of a segment, in terms of variables of type long. Hence, a value of 8000 indicates
that a segment is the size of 8000 variables of type long. This approach is used because the actual size of a variable
of type long changes from machine to machine; LexGen, however, can determine the total number of variables of
type long it needs.

2.2 The LexGen Command

To call the lexical analyzer builder, we use the following command (see Tab. 1):

For generating C code:

lexgen [-o] [-l] [-d] [-s] [-cl <.c file>] [-hl <.h file>]
[-ct <.c file>] [-ht <.h file>] <lexic file>

For generating Java code:

lexgen [-j] [-o] [-l] [-d] [-jl <.java file>] [-js <.java file>]
[-ji <.java file>] [-jt <.java file>] <lexic file>

3 The Syntax and Semantics Analyzer Builder: CompGen

The CompGen module is primarily used to create a syntax analyzer for a language defined using an LL(1) gram-
mar. A grammar is LL(1) when at each decision point, only the current lexical element is needed to determine
which direction to take in the analysis. Because of their structure, syntax analyzers for LL(1) grammars are easily
programmed, using recursive functions, one for each category of the grammar. The structure of the functions reflect
the syntax itself. Hence, there is a direct translation of the grammar definition into the syntax analyzer.

However, this is not the only use of CompGen. In addition to syntax analysis, the analyzer generated can
perform semantics analysis. This is not automatically generated, but rather programmed into the grammar definition
by inserting actions to be performed during the syntax analysis. These actions are C or Java statements that are
placed at the exact point in the grammar where they should logically be performed.

The grammar description file contains: (1) the syntax definition, (2) the declaration of the actions to be included
in the syntax analyzer, and (3) generation parameters. The grammar is made of a set of categories, each of which
is defined using regular expressions composed of literals, lexical constructs, and categories. The description of the
literals and lexical constructs is stored in a lexicon description file (the same used by LexGen). For example, using
a Backus-Naur Form (BNF) syntax, a simple language to evaluate prefix expressions would be:
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Table 1: Parameters and options for the lexgen command

Parameter:

<lexic file> The lexgen command takes one parameter: the lexicon description file. The file must
have a .lex extension. See Section 5.1 for a detailed description of the content of this
file.

C generation options:

-o Does not perform the optimization of the FSA.
-l Does not generate the lexical analyzer routines and declaration. The user should still

use the -cl and -hl options to set the name of the files containing the lexical analyzer
routines (-cl) and declarations (-hl).

-d Activates the debugging information in the C output file.
-s Uses char ** instead of FILE * as the type of the input to the lexical analyzer. It

will also change the name of the lexical analyzer routines to differentiate them from the
routines needed to read from a file, to avoid name conflicts.

-cl <.c file> Specifies the name of the C file containing the lexical analyzer routines. By default,
the name of the .c file will be generated based on the .lex file; e.g., prefix.lex will
generate the C file named prefix lex.c.

-hl <.h file> Specifies the name of the header file containing the declarations of the lexical routines. By
default, the name of the .h file will be generated based on the .lex file; e.g., prefix.lex
will generate the header file named prefix lex.h.

-ct <.c file> Specifies the name of the C file(s) containing the FSA structures. By default, the name
of the .c file will be generated based on the .lex file; e.g., prefix.lex will generate
either a unique C file named prefix fsa.c or a series of C files named prefix fsa1.c,
prefix fsa2.c, ...

-ht <.h file> Specifies the name of the header file containing the declarations of the variables describing
the FSA. By default, the name of the .h file will be generated based on the .lex file;
e.g., prefix.lex will generate the header file named prefix fsa.h.

Java generation options:

-j Generates Java code instead of C code.
-o Does not perform the optimization of the FSA.
-l Does not generate the lexical analyzer routines and declaration. The user should still

use the -jl, -js, -ji, and -jt options to set the file names properly.
-d Activates the debugging information in the Java output file.
-jl <.java file> Specifies the name of the Java file containing the lexical analyzer routines. By default,

the name of the .java file will be generated based on the .lex file; e.g., prefix.lex will
generate the Java file named prefixLex.java.

-js <.java file> Specifies the name of the Java file defining the generic tokens used by all lexical analyzers
generated. By default, the name of the .java file will be generated based on the .lex

file; e.g., prefix.lex will generate the Java file named prefixLexSymbols.java.
-ji <.java file> Specifies the name of the Java file containing the FSA structures for the current language.

By default, the name of the .java file will be generated based on the .lex file; e.g.,
prefix.lex will generate a Java file named prefixInstLex.java.

-jt <.java file> Specifies the name of the Java file containing the declarations of the tokens spe-
cific to the current language. By default, the name of the .java file will be gen-
erated based on the .lex file; e.g., prefix.lex will generate the Java file named
prefixInstLexSymbols.java.
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<expressions> ::= /[ <expression> || ’,’ ]/ ’.’ ;
<expression> ::= <atom> | <operator> <expression> <expression> ;
<atom> ::= integer ;
<operator> ::= ’+’ | ’-’ | ’*’ | ’/’ ;

A prefix expression is defined as either an atom (a single value) or an operator followed by two operands (which
are expressions). In this particular case, an atom is simply an integer value, and the valid operators are + and -, for
addition and subtraction, respectively.

If we only provide this information to CompGen, it will generate a C module that contains the routines needed
to analyze the syntax of an expression. However, no other action will be performed. Therefore, we need to know
how to add actions in the grammar. First, we must declare the actions. The actions are pieces of C or Java code to
be inserted in the grammar. In the prefix language example, we need actions for (1) declaring local variables for the
different categories (or routines), (2) assigning values to these variables, and (3) performing the operations. For a
Java program, The resulting grammar will be:

@myInteger // declaration of inner class for passing Integer values
$begin action

public class myInteger {
private Integer value ;
public myInteger(int i) {

value = new Integer(i);

}
public void setValue(int i) {

value = new Integer(i);

}
public int getValue() {

return value.intValue();

}
public Integer getInteger() {

return value;

}
}

$end action

@declare // declaration of local variables
$begin action

myInteger val2=new myInteger(0);
myInteger operator=new myInteger(0);

$end action

@assign val // assigns the content of the lexical analyzer’s result to val
$begin action

val.setValue((val.getInteger()).parseInt(inst lexical.value));

$end action

@assign times // if operator is 0, then it is a multiplication
$begin action

operator.setValue(0);

$end action

@assign divide // if operator is 1, then it is a division
$begin action

operator.setValue(1);

$end action

@assign plus // if operator is 2, then it is an addition
$begin action

operator.setValue(2);

$end action
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@assign minus // if operator is 3, then it is an addition
$begin action

operator.setValue(3);

$end action

@do operation // executes the actual operation
$begin action

if (operator.getValue() == 0)

val.setValue(val.getValue() * val2.getValue());

else if (operator.getValue() == 1)

val.setValue(val.getValue() / val2.getValue());

else if (operator.getValue() == 2)

val.setValue(val.getValue() + val2.getValue());

else

val.setValue(val.getValue() - val2.getValue());

$end action

@print result // prints out the result
$begin action

System.out.println("="+(val.getInteger()).toString());

$end action

@declare val // declares local variable val
$begin action

myInteger val=new myInteger(0);

$end action

@exit // error handling routine
$begin action

// empty error management routine...

$end action

$initial <expressions> /* the initial category is <expressions> */
$global @myInteger
$error @exit
$name Prefix

<expressions> @declare val ::= /[ <expression> ("val") @print result || ’,’ ]/ ’.’ ;
<expression> ("myInteger val" "val" ) @declare ::=

<atom> ("val") |
<operator> ("operator") <expression> ("val") <expression> ("val2") @do operation;

<atom> ("myInteger val" "val") ::= integer @assign val ;
<operator> ("myInteger operator" "operator") ::=

’+’ @assign plus |
’-’ @assign minus |
’*’ @assign times |
’/’ @assign divide ;

Here, we declared a number of actions. Notice that the @declare action is placed before the ::= literal; in this
case, the actions are performed prior to any other actions in the function declared for the category. The other actions
are executed after the analysis of the subexpression they follow, and before the subexpression they precede, as shown
in the resulting Java files (Appendix A).

Note also in the example, the use of parameters (declaration) and arguments (function call). The parameters are
actual C or Java variable declarations, while the arguments are the actual C or Java expressions used when calling
a function. Finally, we have defined the category <expressions> as the initial category of the grammar, i.e., the
entry point for the analysis, by using the $initial operator.
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3.1 Segmenting the Syntax and Semantics Analyzer Routines in C

The size of the syntax and semantics analyzer routines produced might extend over the segment size limits, especially
on small computers. To avoid this problem, the $skip operator can be used. This operator indicates the end of a
source file. In other words, if no $skip operator is found, only one source file will be produced. Each $skip operator
will force the creation of a new source file. This way, the user can manually determine where to cut the source files
in order for the resulting compiled files to fit within the segments.

3.2 System-defined Variables in C

There are a certain number of reserved names, used by the syntax analyzer. These variables have specific types.
However, the user can change some of those types using special operators defines in the grammar definition language.
The following variables can be used within each category:

f The input stream. The type of f can be modified using the $file operator. The default type of f is FILE *.

token The value of the token currently being analyzed, as returned by the lexical analyzer. The type of token is a
pointer to a long (long *).

value The string matching the current token. The type of value can be modified using the $value operator. The
default type of value is a pointer to a char * (char **).

prev char The look-ahead buffer of the lexical analyzer. This buffer is used to hold the extra characters needed in
determining the current token value and type. The type of prev char can be modified using the $previous
operator. The default type of prev char is a pointer to a char * (char **).

line count An index on the current line in the input buffer. The type of line count is a pointer to a long
(long *).

char count An index on the current character in the input buffer. It is reset to 1 at each new line. The type of
char count is a pointer to a long (long *).

context A universal pointer used to hold user-specified data to pass to the error handling routine, when invoked.
The type of context is void *.

token names A table of external token names, as defined in the lexicon description file. This table is useful when
generating error messages. The type of token names is a table of strings (char *[]).

The code generation is made assuming that LexGen will be used to build the lexical analyzer. This is not
necessarily the case, however. That is why we allow for changes in the type of some of the parameters to the lexical
routine, hence to the categories. If the -s option of LexGen is used, the type of the input stream must be changed
to char **. In addition to these variables, the different categories can also access the user defined parameters and
local variables.

If an error is found in the course of the syntax analysis, an error handling routine is called. The actual name
of this routine is dependent on the grammar itself; its name will be (1) name error , where name is the string
specified by the $name operator, if used, or (2) initial error , where initial is the name of the initial category of
the grammar. The content of that routine is left to the user of CompGen. The $error operator let the user assign
actions to that routine. The parameters accessible by the user in the error handling routine are:

f The input stream. The type of f can be modified using the $file operator. The default type of f is FILE *.

token The value of the token currently being analyzed, as returned by the lexical analyzer. The type of token is a
pointer to a long (long *).

tokens A list of the tokens that where expected when the error routine was called. The type of tokens is long [].

6



name of parent The name of the category where the error occurred. The type of name of parent is char *.

input buffer The content of the input buffer of the lexical analyzer. It is actually the value of ’prev char’ when
the error occurred. It has the same type as ’prev char’ (char **, by default).

line count An index on the current line in the input buffer. The type of line count is a long.

char count An index on the current character in the input buffer. It is reset to 1 at each new line. The type of
char count is long.

context A universal pointer used to hold user-specified data to pass to the error handling routine. The type of
context is void *.

token names A table of external token names, as defined in the lexicon description file. This table is useful when
generating error messages. The type of token names is a table of strings (char *[]).

Finally, the syntax analyzer is invoked using the syntax analyzer execution routine. The actual name of this
routine is dependent on the grammar itself; its name will be (1) execute name analyzer, where name is the string
specified by the $name operator, if used, or (2) execute initial analyzer, where initial is the name of the initial category
of the grammar. The syntax analyzer execution routine uses at least one parameter:

f The input stream. The type of f can be modified using the $file operator. The default type of f is FILE *.

The other parameters are identical to the parameters declared for the initial category.

3.3 System-defined Variables in Java

In Java, the lexical and syntactical analyzers are defined as a series of classes and interfaces, as illustrated in Figure 1.

«interface»

<lex>LexSymbols

«interface»

<lex>InstLexSymbols

<lex>Lex <lex>InstLex <grammar>

*1

Figure 1: Classes generated by CompGen and LexGen

The <lex>LexSymbols interface defines generic tokens used for any lexical analyzer, where <lex> stands for the
lexicon name. The <lex>Lex class implements all the lexical analyzer routines, independant of a specific language,
and as such may be reused if multiple languages are defined in a single system. The <lex>InstLexSymbols inter-
face defines language-specific tokens, while the <lex>InstLex defines a language-specific specialization of the The
<lex>Lex class.

The syntax analyzer is implemented in the <grammar> class and provides a number of instance variables and
methods:

inst lexical This variable is a reference to the lexical analyzer. The type of this object is <lex>InstLex. The
user-defined actions may access any of public methods of this class, including:

assign input(BufferedReader) Used to modify the input stream for this lexical analyzer.

getCharCount() Returns the character position on the current line.
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getLineCount() Returns the number of the current line.

getPrevChar() Returns the look-ahead buffer of the lexical analyzer.

getValue() Returns the actual value of the current token.

context A reference to an object used to manage the analyzer’s context, such as the name of the current category
being processed.

token The numeric value of the current token.

token names A table of String objects which associates a name to the different numeric values that a token may
take.

execute analyzer(BufferedReader) Runs the syntax analyzer on a BufferedReader object.

getPrevChar() Returns the look-ahead buffer of the lexical analyzer (same as inst lexical.getPrevChar()).

3.4 Exception Handling: Ambiguous Grammars

As we mentioned earlier, LL(1) grammars are such that at each branching point, only one symbol is necessary to
determine what direction to take. This characteristic is called the LL(1) condition. However, this condition might
not always be achieved. The CompGen program will still generate the appropriate syntax analyzer. When detecting
an ambiguous category (i.e., at least one branching point does not comply with the LL(1) condition), it will declare
a special local variable called ambiguity. At each ambiguous condition, it will add a test on the value of ambiguity,
hence making every condition distinct. It is the task of the grammar designer to either change the grammar to avoid
the ambiguity or assign the appropriate value to ambiguity, at the appropriate place. Whenever CompGen informs
the user of an ambiguous category, the user should inspect the program generated to determine where to place the
assignment to ambiguity and what value to assign in the different contexts.

3.5 The CompGen Command

To call the syntax and semantics analyzer builder, we use the following command (Tab. 2):

For generating C code:

compgen [-d] [-c <.c file>] [-h <.h file>] [-hl <.h file>]
[-ht <.h file>] [-t <.lex file>] <.grm file>

For generating Java code:

compgen [-j] [-d] [-jc <.java file>] [-ji <.java file>] [-t <.lex file>] <.grm file>

4 The Syntax Diagram Builder: DiagGen

This program is only used for visualization and documentation purposes. It takes the grammar definition used by the
syntax and semantics analyzer builder, or the lexicon description file, and generates Encapsulated PostScript (EPS)
files illustrating the definition of categories, literals, and lexical constructs. These files can be edited by software that
can read and edit EPS files (e.g., Corel Draw, Adobe Illustrator, etc.) and can be placed for printing in a variety of
software.
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Table 2: Parameters and options for the compgen command
Parameter:

<.grm file> The compgen command takes only one parameter, which is the grammar syntax descrip-
tion file. The file must have a .grm extension. See Section 5.2 for a detailed description
of the content of this file.

C generation options:
-d Activates the debugging information in the C output file.
-c <.c file> Specifies the name of the C file produced. By default, the name of the .c file will be

generated based on the .grm file; e.g., prefix.grm will generate the unique C file named
prefix.c or, if $skip is used, the series of C files named prefix1.c, prefix2.c...

-h <.h file> Specifies the name of the header file containing the declarations needed by the syntax
analyzer. By default, the name of the .h file will be generated based on the .grm file;
e.g., prefix.grm will use the header file named prefix.h.

-hl <.h file> Specifies the name of the header file containing the declarations lexical analyzer routines,
usually generated by LexGen. By default, the name of the .h file will be generated based
on the .grm file; e.g., prefix.grm will use the header file named prefix lex.h.

-ht <.h file> Specifies the name of the header file containing the FSA description, usually generated
by LexGen. By default, the name of the .h file will be generated based on the .grm file;
e.g., prefix.grm will use the header file named prefix fsa.h.

-t <.lex file> Specifies the name of the lexicon description file to be used. By default, the name of the
.lex file will be generated based on the .grm file; e.g., prefix.grm will use the header
file named prefix.lex.

Java generation options:
-j Generates Java code instead of C code.
-d Activates the debugging information in the Java output file.
-jc <.java file> Specifies the name of the Java file produced. By default, the name of the .java file will

be generated based on the .grm file; e.g., prefix.grm will generate the unique C file
named prefix.java.

-ji <.java file> Specifies the name of the Java file containing the FSA structures for the current lan-
guage, usually generated by LexGen. By default, the name of the .java file will be
generated based on the .lex file; e.g., prefix.lex will generate a Java file named
prefixInstLex.java.

-t <.lex file> Specifies the name of the lexicon description file to be used. By default, the name of the
.lex file will be generated based on the .grm file; e.g., prefix.grm will use the header
file named prefix.lex.
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Table 3: Parameters and options for the diaggen command
Parameter:

<input file> The diaggen command takes only one parameter, which is a grammar syntax description
file or a lexicon description file. The file must have a .grm or a .lex extension. See
Sections 5.1 and 5.2 for a detailed description of the content of these files.

Options:

-one <name> Instructs DiagGen to print the category, literal, or lexical construct named ¡name¿.
-limit <height> Instructs DiagGen to print the categories, literals, or lexical constructs in multiple files,

each file containing the syntax diagram of many categories, literals, or lexical constructs.
The image generated will not exceed ¡height¿ points. This option is the default, with
¡limit¿ set to 700 points (with 72 points/inch).

-all Instructs DiagGen to print the categories, literals, or lexical constructs in multiple files,
each file containing the syntax diagram of only one category, literal, or lexical construct.

-e <.eps file> Specifies the file pattern used to generate the name of the EPS and PICT files generated.
By default, the name of the .eps files will be generated based on the .grm file; e.g.,
prefix.grm will generate the files prefix1.eps, prefix2.eps, ...

4.1 Configuring DiagGen

The look of the diagrams produced can be modified by changing the configuration file, diaggen.cfg. This file
contains parameters used by DiagGen to generate the diagrams. The structure of this file is defined in Section 5.3.

When installing the DiagGen module, a mapping must be made between the extended ASCII used by the local
machine and the extended ASCII defined by Adobe for the PostScript language. The structure of this file is defined
in the Postscript Extended ASCII Correspondence Table File Section 5.4.

4.2 The DiagGen Command

To call the syntax diagram builder, we use the following command (Tab. 3:

diaggen [-one <name>|-limit <height>|-all][-e <.eps file>] <input file>

5 Input files for CompTools

In this section, we describe the different file formats used by CompTools. Since most of these file formats follow
LL(1) grammar syntax, we first need to define a grammar syntax to describe these file formats. We start with the
following naming convention: (1) strings between < and > are categories (e.g., <grammar>), (2) strings between single
quotes (’) are reserved words (e.g., ’$name’), (3) strings containing letters and underscores ( ) are lexical constructs
(e.g., action name). All other strings are operators used in the definition of the file formats. These operators are:
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String Meaning
::= Start of category definition.
; End of category definition.
*[ ]* Zero or more repetitions of the subexpression included inside *[ and ]*.
+[ ]+ One or more repetitions of the subexpression included inside +[ and ]+.
-[ ]- Zero or one repetition of the subexpression included inside -[ and ]-.
[ ] A choice sub-expression. One subexpression within the list of choices should be

selected.
| Separation between choices within a category or within a choice subexpression.
/[ || ]/ One or more repetitions of the subexpression included inside /[ and ||. Each

repetition is separated by the subexpression included inside || and ]/.

5.1 The Lexicon Description File

The lexicon description file is used for the generation of (1) the lexical analyzer and (2) the syntax and semantics
analyzer. In the first case, it provides the definition of the different literals and lexical constructs, while in the second
case, it maps these definitions with different aliases referring to the same lexical construct that could be used within
the grammar syntax definition.

The syntax of the lexicon description file is as follows:

<lexicon> ::=

*[ [

’$extension’ extension |
’$name’ lexic name |
’$packagename’ package name |
’$include’ action code |
’$segment’ integer

] ]*
*[ <lex unit definition> ]* ;

At the top of the file, we first define some parameters: (1) a suffix to be used for the lexical analyzer routines
to differentiate between different usage like reading from a file or from a string ($extension), (2) the name of the
lexicon ($name), used to uniquely identify the lexical analyzer tables (in C) or the classes and interfaces generated (in
Java), (3) the name of the Java package containing the lexical analyzer (in Java only), (4) declarations to be inserted
in the header file containing the lexical analyzer routine declarations ($include), and (5) the maximum number of
variables of type long that can be placed in an individual data segment ($segment). Then follows the list of lexical
unit definitions.

<lex unit definition> ::= token id ’(’ -[ super token id ]- ’)’ error string

’(’ +[ <lexical unit alias> ]+ ’)’
regular expression ;

The definition of one lexical unit is composed of the token name (token id), an optional super token name
(super token id), a name used to refer to a specific token in the syntax analyzer (error string), a series of aliases
(lexical units with the same syntax but used in different contexts in the syntax description of a language), and a
regular expression defining the syntax of the token itself. Here are some examples of token definitions:

IDSYM () "identifier" (variable identifier) [a.z,A.Z, ]*[a.z,A.Z, ,0.9];
SCSYM () ";" (’;’) \;
BEGSYM (IDSYM) "begin" (’begin’) begin
ENDSYM () "end" (’end’) end|(a.zA.Z 0.9)

IDSYM is defined using [a.z,A.Z, ]*[a.z,A.Z, ,0.9];. IDSYM is formed of any letter (upper and lower case) or
underscore, followed by any number of any letter, any digit, or underscore. Hence, IDSYM is a lexical construct.

SCSYM is defined using \;. SCSYM is the ; character itself. SCSYM is a literal.
BEGSYM is defined using begin. BEGSYM is the string begin. BEGSYM is a literal, but is defined as one instance of

the possible values of the lexical construct IDSYM.
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ENDSYM is defined using end|(a.zA.Z 0.9). ENDSYM is the string end. To be recognized, it must be followed by
any character different from a letter, a digit, or an underscore, otherwise, it would be recognized as an IDSYM.

The token name is the internal identifier by which the lexical analyzer and the syntax and semantics analyzers
refer to the different literals or lexical constructs. The token names are unique, implying that no literal or lexical
construct can have the same token name as another literal or lexical construct. If multiple languages are used within
the same program, the user must ensure that no two tokens have the same identifier.

The super token name is used solely to reduce the size of the FSA. In certain situations, certain literals are
actually one element of a set of lexical constructs. In our examples, the lexical construct IDSYM is the set of all
strings beginning by a letter or an underscore and followed by a letter, underscore, or digit. It is quite obvious that
begin and end both match that description. However, for the FSA to determine that end was encountered, we must
specify that the literal end is the string e, n, d followed by any character but a letter, underscore or digit. The
description of begin is simpler because we declare it as an element of the lexical construct IDSYM.

When generating the syntax and semantics analyzer, we build a global table called token names, which is the
name of the token for the world outside the syntax and semantics analyzer. For instance, token names[IDSYM]
yields the string identifier. This is useful when generating an error message with the error handling routine in
the syntax analyzer.

<lexical unit alias> ::= literal | lexical construct ;

The list of aliases is used to map names used in the grammar description with the token name. For readability
reasons, it might be more appropriate to use the word variable in the grammar syntax than identifier to illustrate
the actual usage of the identifier. Each alias is either a literal or a lexical construct.

In the lexicon description file grammar described above, we have used a number of lexical constructs. These
lexical constructs have a strict syntax.

• An integer is defined as one or more digits.

• An error string is defined as any character between double quotes ". A double quote can be included in the
string by using \". The \ character itself is included by using \\.

• A literal is refered to in the grammar as a series of characters between single quotes ’. A single quote can be
included in the string by using \’. The \ter itself is included by using \\.

• The lexical constructs lexic name, token id, super token id, and lexical construct are defined as a series of
character different from the set :, =, |, ;, (, ), +, [, -, *, ], $, @, ", <, ’, >, /, newline, tab, and space.
Furthermore, it cannot start with a digit (0 to 9).

• The construct action code is defined as the shortest string of character, beginning by $begin keyword, and
ending by the $end keyword. It is used to enter C statements in the lexicon definition.

5.1.1 Defining a Regular Expression

The regular expression declaration starts at the first non-white character after the alias list and ends at the first
newline encountered, unless the newline is preceeded by a \. It describes how to recognize a certain token (literal
or lexical construct) on the input stream. The declaration of the construct regular expression is more complex
than other constructs. In fact, to show the meaning of the regular expression, we must present the grammar used to
create one. A regular expression E is defined as:

<expression> ::= +[ <subexpression> -[ ’:’ ]- ]+ -[ ’|’ +[ -[ ’:’ ]- <subexpression> ]+ ]- ;

Here, the category <subexpression> is equivalent to the definition of S, below. The vertical bar is used to
indicate the end of the lexical element being analysed; it means that the lexical analyzer must encounter the second
sequence of subexpressions before accepting the token; the second list of subexpressions is called the anticipation.
The colon is used by DiagGen to perform a line change when drawing the syntax diagram for the lexical unit.

A subexpression S is defined as any of the followings:
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1. L The character L itself (except special characters).

2. L1.L2 Any character from L1 to L2 (L2 included).

3. \L Special characters:

\a Margin bell

\b Backspace

\f Formfeed

\n Newline

\r Linefeed

\s Significant space

\t Right tab

\v Vertical tab

\newline Continue on the next line

Other characters: The character L itself. Used when one of the syntax special characters must be used.

4. \xhh The character with hexadecimal value hh.

5. \Xhhhh The character with hexadecimal value hhhh (for Unicode values).

6. \ddd The character with decimal value ddd.

7. (S1S2 . . . Sn) Any character except the ones defined by subexpressions S1, . . . , Sn. The subexpressions S1, . . . , Sn

can only be of the formats (1) through (6) defined above.

8. S1S2 . . . Sn Concatenation of subexpressions S1, . . . , Sn.

9. +S; Subexpression S is repeated at least once.

10. *S; Subexpression S is repeated zero or more times.

11. -S; Subexpression S is optional (zero or one repetition).

12. /S1=S2; Subexpression S1 is repeated at least once. Each repetition is separated by expression S2.

13. [S1, . . . , Sn] Only one subexpression within S1, . . . , Sn is used (a choice).

14. #N#S; Subexpression S is repeated exactly N times.

15. #N,M#S; Subexpression S is repeated at least N times, and at most M times.

5.2 The Grammar Syntax Description File

The grammar syntax description file contains: (1) the declaration of actions, (2) the declaration of the grammar’s
global parameters, and (3) the description of the grammar syntax itself. We will now define the syntax of the
grammar syntax file.

The grammar syntax is defined using the grammar syntax itself as follows:
<grammar> ::=

*[ <action declaration> ]*
*[ <grammar parameters> ]*
+[ <category> -[ ’$skip’ ]- ]+ ;
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The category <grammar> is the main category of the grammar definition file syntax. When defining a grammar,
we first must define all the actions to be used, if any. Then, we declare parameters to CompGen. Finally, we define
the set of all categories.

<grammar parameters> ::=

’$result’ string |
’$name’ lexical construct |
’$file’ string |
’$previous’ string |
’$initial’ category name |
’$error’ +[ action name ]+ |
’$global’ +[ action name ]+ |
’$include’ +[ action name ]+ ;
’$packagename’ string ;
’$packages’ +[ string ]+ ;
’$interfaces’ +[ string ]+ ;
’$constructor’ +[ action name ]+ ;

The grammar parameters are the application dependent variables used by CompGen. The are (1) the type of the
variable containing the current lexical symbol ($result), (2) the name of the grammar ($name), (3) the type of the
input stream, e.g., FILE * or char ** ($file) (in C only), (4) the type of the lexical analyzer buffer ($previous)
(in C only), (5) the name of the initial category, the default being the first category in the list of category definitions
($initial), (6) the list of actions defining the error routine ($error), (7) global initialisations ($global), (8) global
declarations ($include), (9) the name of the Java package containing this syntax analyzer, (10) the list of packages to
import into the class generated, (11) the list of interfaces that this syntax analyzer must implement, and (12) actions
to add to the constructor of the syntax analyzer.

For $file, we define the actual type, as it will be used in the analysis routines. In the case of $result and
$previous, we define the type of the value, not the type of the pointer to that value (char * instead of char **).
The operators $global and $include are both used to insert C or Java statements in the syntax and semantics
analyzer produced. The distinction is only seen when generating C files, where the $global operator will define the
C statements to include only in the first .c file produced, whereas the $include operator will define the C statements
to include in the .h file which is included in all the .c file produced.

<action declaration> ::= action name action code ;

This category defines how to declare an action to be inserted in the generated analyzer.

<category> ::= <category defn> *[ action name ]*

’::=’ <alternative>

[ *[ ’:’ <alternative> ]* | *[ ’|’ <alternative> ]* ]

’;’ ;

The category description allows for the declaration of the name and parameters of the category, as well as
initialization actions; e.g., local variable declaration and initialization. The category must include at least one
alternative, the alternatives being separated either by : (line break indicator for DiagGen) or | (different alternatives
within the same category).

<category defn> ::= category name -[ <parameters> ]- ;

The category definition includes the name of the category and the declaration of the parameters of the category.

<parameters> ::= ’(’ /[ declaration variable || ’,’ ]/ ’)’ ;

The parameters are the declarations of C or Java variables to be received by the categories in addition to the
standard parameters generated by CompGen. The declaration is the actual declaration of the variable, while
variable corresponds to the name of the variable being declared. The different declarations are comma-separated.

<alternative> ::= *[ action name ]*

+[ [

<one or more> |
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<optional> |
<zero or more> |
<separated> |
<choices> |
<category call> |
reserved word |
lexical construct

] *[ action name ]* ]+ ;

An alternative is one expression describing the syntax of a series of categories and subexpressions. Actions can
be inserted around each subexpressions.
<category call> ::= category name -[ <arguments> ]- ;

The category definition includes the name of the category and the arguments used in the call to the category.
<arguments> ::= ’(’ /[ expression || ’,’ ]/ ’)’ ;

The arguments are the actual values and/or variables passed to the categories, when called. The different
arguments are comma-separated.
<one or more> ::= ’+[’ <alternative> ’]+’ ;

This type of alternative specifies that the subexpression (<alternative>) is to be found one or more times.
<optional> ::= ’-[’ <alternative> ’]-’ ;

This type of alternative specifies that the subexpression (<alternative>) is optional (zero or one only). If an
action is placed after a ]- literal, it may begin by else. In this case, the action would be executed only if the
alternative is not used.
<zero or more> ::= ’*[’ <alternative> ’]*’ ;

This type of alternative specifies that the subexpression (<alternative>) is to be found zero or more times.
<separated> ::= ’/[’ <alternative> ’||’ <alternative> ’]/’ ;

This type of alternative specifies that the first subexpression will appear at least once. Every time it is repeated,
the repetitions are separated by the second subexpression.
<choices> ::= ’[’ /[ <alternative> || ’|’ ]/ ’]’ ;

This type of alternative defines a list of one or more subexpressions (<alternative>) to choose from (one and
only one is chosen within the list).

In the grammar above, we have used a number of lexical constructs. These lexical constructs have a strict syntax.

• A string is defined as any character between double quotes ". A double quote can be included in the string by
using \". The \ character itself is included by using \\. Constructs declaration, variable, and expresssion
are of this type as well.

• A lexical construct is defined as a series of character different from the set :, =, |, ;, (, ), +, [, -, *, ], $,
@, ", <, ’, >, /, newline, tab, and space. Furthermore, it cannot start with a digit (0 to 9).

• A category name is defined as any character other than < and > between the characters < and >.

• An action name is a series of character different from the set :, =, |, ;, (, ), +, [, -, *, ], $, @, ", <, ’, >, /,
newline, tab, and space, preceded by an @ sign.

• The construct action code is defined as the shortest string of character, beginning by $begin action keyword,
and ending by the $end action keyword. It is used to enter C statements in the grammar definition.

• A reserved word (or literal) is refered to in the grammar as a series of characters between single quotes ’. A
single quote can be included in the string by using \’. The \ character itself is included by using \\.

<comments> ::= *[ [ comments | eoln comments ] ]* ;

Finally, comments can be placed anywhere within the grammar. Two forms of comments are accepted: comments
and eoln comments. The construct comments is defined as the shortest string of character beginning by /* and ending
by */, not including the string /*. The construct eoln comments is a string starting by // and ending with a newline.
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5.3 The Diagram Builder Configuration File

This section describe the syntax of the configuration file (diaggen.cfg) for the diagram builder DiagGen. The
configuration file is used to change the appearance of the diagrams built by DiagGen. These parameters include
the look of repetition loops, selection lists, text boxes, character intervals, anticipation marker, connection lines,
category layout, character style, and the type of output expected.
<configuration> ::=

/[ [

<loop> |
<choice> |
<text> |
<elipsis> |
<separation bar> |
<line> |
<white box> |
<category> |
<style> |
<output>

] || ’;’ ]/ ’.’ ;

The configuration file is composed of 10 sections: loop configuration, choice configuration, text configuration,
elipsis configuration, separation bar configuration, line configuration, output configuration, white box configuration,
and style configuration. The sections are separated by semi-colons, the last section ending with a period. Within a
section, elements are comma-separated. Note that the order of the sections is not important.
<loop> ::= ’loop’ ’configuration’ ’:’

/[ [ ’space’ integer | ’width’ integer | ’extra’ ’space’ integer ] || ’,’ ]/ ;

The loop configuration section defines the parameters to draw a repetition loop. The meaning of space, width,
and extra space is illustrated below. Default values are 3 points for space, 4 points for width, and 2 points for
extra space.

sp
ac

e

width
extra
space

<choice> ::= ’choice’ ’configuration’ ’:’

/[ [ ’space’ integer | ’width’ integer ] || ’,’ ]/ ;

The choice configuration section defines the parameters to draw a selection list. The meaning of space and width
is illustrated below. Default values are 3 points for space and 11 points for width.

space

width

<text> ::= ’text’ ’configuration’ ’:’

/[ [ ’space’ integer | ’width’ integer | ’shift’ integer ] || ’,’ ]/ ;

The text configuration section defines the parameters to draw a text box. The meaning of space and width is
illustrated below. Default values are 5 points for space and 5 points for width.

text spacew
id

th
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<elipsis> ::= ’elipsis’ ’configuration’ ’:’

/[ [ ’space’ integer | ’dot’ ’radius’ integer | ’inter’ ’dot’ ’space’ integer ] || ’,’ ]/ ;

The elipsis configuration section defines the parameters to draw an elipsis, marking an interval of possible selec-
tions. The meaning of space, dot radius, and inter dot space is illustrated below. Default values are 3 points
for space, 1 points for dot radius, and 2 points for inter dot space.

do
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inter dot space

space

<separation bar> ::= ’separation’ ’bar’ ’configuration’ ’:’

/[ [ ’width’ integer | ’height’ integer ] || ’,’ ]/ ;

The separation bar configuration section defines the parameters to draw a marker indicating the start of the
anticipation for lexical units. The meaning of width and height is illustrated below. Default values are 3 points for
width and 10 points for height.

height

width

<line> ::= ’line’ ’configuration’ ’:’

/[ [ ’connection’ ’width’ integer | ’thickness’ real ] || ’,’ ]/ ;

The line configuration section defines the parameters to draw lines. The meaning of connection width and
thickness is illustrated below. Default values are 2 points for connection width and 0.5 points for thickness.

connection
widthth
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<white box> ::= ’white’ ’box’ ’configuration’ ’:’

/[ [ ’width’ real | ’height’ real ] || ’,’ ]/ ;

The white box configuration section defines the parameters to draw a white box. This white box is used to hide
part of two lines indicating that a character is not selected. The meaning of width and height is illustrated below.
Default values are 0.5 points for width and 2.5 points for height.
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<category> ::= ’category’ ’configuration’ ’:’

/[ [

’name’ ’shift’ integer |
’line’ ’shift’ integer |
’line’ ’space’ integer |
’line’ ’extra’ ’width’ integer |
’inter’ ’category’ ’space’ integer |
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’arrow’ ’width’ integer |
’arrow’ ’height’ integer |
’connection’ ’line’ ’width’ integer

] || ’,’ ]/ ;

The category configuration section defines the parameters to draw category definitions. The meaning of name
shift, line shift, line space, line extra width, inter category space, arrow width, arrow height, and
connection line width is illustrated below. Default values are 3 points for name shift, 5 points for line shift,
6 points for line space, 2 points for line extra width, 20 points for inter category space, 2 points for arrow
width, 2 points for arrow height, and 5 points for connection line width.

name
shift

inter category space
connection line width

line extra width

line space

line shift arrow
width

arrow
height

<style> ::= ’style’ ’configuration’ ’:’

/[ [

’curvature’ ’ratio’ real |
’trace’ ’box’ [ ’TRUE’ | ’FALSE’ ] |
’uppercase’ ’width’ real |
’lowercase’ ’width’ real |
’category’ ’typeface’ ’postscript’ string |
’literal’ ’typeface’ ’postscript’ string |
’construct’ ’typeface’ ’postscript’ string

] || ’,’ ]/ ;

The style configuration section defines miscelaneous parameters. The curvature ratio is used to control the
curvature of curved lines in the produced diagram. The higher the curvature ratio, the less pronounced is the
curve, as illustrated below. The default value of the curvature ratio is 1.9.

curvature ratio

1.5 2.0 3.0

The trace box option enables or disables the drawing of characteristic boxes around categories (square box),
literals (oval), and lexical constructs (rounded box). The default value of trace box is TRUE. The uppercase width
and lowercase width options are used to evaluate the actual width of the characters in proportional typefaces.
Default values are 2.4 for uppercase width and 1.75 for lowercase width. The typeface options (category,
literal, and construct) are used to select the typefaces representing categories, literals, and lexical constructs.

5.4 The Postscript Extended ASCII Correspondence Table File

The ASCII character set is standard for characters from 0 to 127. However, characters from 128 to 255 are not
included in the standard. The meaning of these characters change from one machine to the other. A correspondance
between the local machine and the standard adopted by Adobe in PostScript must therefore be made. The file
diaggen.tbl contains the mapping of extended ASCII characters for use by DiagGen. This file must be properly
modified to match the local system.
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Each line indicates: (1) the local system character matching the PostScript character and (2) the Postscript
identifier corresponding to that character. The idea is to type in the actual character matching the character defined
by the PostScript identifier.

For example, we have the lines for Egrave and egrave, which correspond to an uppercase E with a grave ac-
cent, and a lowercase e with a grave accent, respectively. The Adobe PostScript word are actually typographical
descriptions of the characters. If no character of the local system match the character, we type in a # sign.

è egrave

# Egrave

In this example, the local (hypothetical) system has a character corresponding to egrave, but not to Egrave.

A Result from CompGen in Java

This appendix contains the files produced by CompGen, based on the grammar example of Section 3. The Test.java
file is used as a Java test application. The other files were generated by CompGen and LexGen.

Program 1 Test.java
import java.net.*;
import java.util.*;
import java.io.*;

public class Test {
public Prefix stringAnalyzer;
/**
* Constructor.
*/
public Test() {

stringAnalyzer = new Prefix();

}
public static void main(String argv[]) {

System.out.println("enter expressions (separated by ’,’ and ending by ’.’ followed by ctrl-D)");
(new Test()).stringAnalyzer.execute analyzer(new BufferedReader(new InputStreamReader(System.in)));

}
}

Program 2 Prefix.java
// Lexicon file: prefix.lex
// Grammar file: prefix.grm

import java.io.*;
import java.util.*;

/**
* This class contains the syntactic/semantic analyzer.
*/

public class Prefix {
// make an instance of the lexical analyzer
private PrefixInstLex inst lexical;

private boolean DEBUG SYNTACTIC = false;
private int debug level = 0;

private Object context;
private int token;

// begining action @myInteger
public class myInteger {
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private Integer value ;
public myInteger(int i) {

value = new Integer(i);

}
public void setValue(int i) {

value = new Integer(i);

}
public int getValue() {

return value.intValue();

}
public Integer getInteger() {

return value;

}
}
// ending action @myInteger

private String[] token names = new String[] {
"No symbol",
"End-of-file",
"integer",
"+",
"-",
"*",
"/",
",",
"."

} ;

private int[] token000 = new int[] {
inst lexical.INT, inst lexical.PLUS, inst lexical.MINUS, inst lexical.TIMES,
inst lexical.DIVIDE, inst lexical. NOSYM

} ;
private int[] token001 = new int[] {

inst lexical. EOF , inst lexical. NOSYM

} ;
private int[] token002 = new int[] {

inst lexical.INT, inst lexical.PLUS, inst lexical.MINUS, inst lexical.TIMES,
inst lexical.DIVIDE, inst lexical.COMMA, inst lexical.PERIOD,
inst lexical. NOSYM

} ;
private int[] token003 = new int[] {

inst lexical.INT, inst lexical. NOSYM

} ;
private int[] token004 = new int[] {

inst lexical.PLUS, inst lexical.MINUS, inst lexical.TIMES, inst lexical.DIVIDE,
inst lexical. NOSYM

} ;

/**
* The constructor.
*/
public Prefix() {

context = new Object();
inst lexical = new PrefixInstLex();

}
private void debug (int lev, String str) {

for (int i=0; i<lev; i++)

System.out.print(’ ’);

System.out.println(str);

}
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private void expressions () {
// begining action @declare val
myInteger val=new myInteger(0);
// ending action @declare val

if ( DEBUG SYNTACTIC ) {
debug (debug level, "BEGIN of expressions ");

debug level++;

}
expression (val);

// begining action @print result
System.out.println("="+(val.getInteger()).toString());
// ending action @print result

while (token == inst lexical.COMMA) {
token = inst lexical.lexical(token000);
if (token == inst lexical. NOSYM )
error ();

expression (val);

// begining action @print result
System.out.println("="+(val.getInteger()).toString());
// ending action @print result

}
token = inst lexical.lexical(token001);
if (token == inst lexical. NOSYM )
error ();

if (token == inst lexical. NOSYM )
error ();

if ( DEBUG SYNTACTIC ) {
debug level--;
debug (debug level, "END of expressions ");

}
}
private void expression (myInteger val) {

// begining action @declare
myInteger val2=new myInteger(0);
myInteger operator=new myInteger(0);
// ending action @declare

if ( DEBUG SYNTACTIC ) {
debug (debug level, "BEGIN of expression ");

debug level++;

}
if (token == inst lexical.INT) {

atom (val);

} else
/* if ((token == inst lexical.PLUS) || (token == inst lexical.MINUS) || (token == inst lexical.TIMES)
|| (token == inst lexical.DIVIDE))
*/
{

operator (operator);

expression (val);

expression (val2);
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// begining action @do operation
if (operator.getValue() == 0)

val.setValue(val.getValue() * val2.getValue());

else if (operator.getValue() == 1)

val.setValue(val.getValue() / val2.getValue());

else if (operator.getValue() == 2)

val.setValue(val.getValue() + val2.getValue());

else

val.setValue(val.getValue() - val2.getValue());

// ending action @do operation

}
if ( DEBUG SYNTACTIC ) {

debug level--;
debug (debug level, "END of expression ");

}
}
private void atom (myInteger val) {

if ( DEBUG SYNTACTIC ) {
debug (debug level, "BEGIN of atom ");

debug level++;

}
// begining action @assign val
val.setValue((val.getInteger()).parseInt(inst lexical.getValue()));
// ending action @assign val

token = inst lexical.lexical(token002);
if (token == inst lexical. NOSYM )
error ();

if ( DEBUG SYNTACTIC ) {
debug level--;
debug (debug level, "END of atom ");

}
}
private void operator (myInteger operator) {

if ( DEBUG SYNTACTIC ) {
debug (debug level, "BEGIN of operator ");

debug level++;

}
if (token == inst lexical.PLUS) {

// begining action @assign plus
operator.setValue(2);
// ending action @assign plus

token = inst lexical.lexical(token000);
if (token == inst lexical. NOSYM )
error ();

} else if (token == inst lexical.MINUS) {
// begining action @assign minus
operator.setValue(3);
// ending action @assign minus

token = inst lexical.lexical(token000);
if (token == inst lexical. NOSYM )
error ();

} else if (token == inst lexical.TIMES) {
// begining action @assign times
operator.setValue(0);

22



// ending action @assign times

token = inst lexical.lexical(token000);
if (token == inst lexical. NOSYM )
error ();

} else // if (token == inst lexical.DIVIDE) {
// begining action @assign divide
operator.setValue(1);
// ending action @assign divide

token = inst lexical.lexical(token000);
if (token == inst lexical. NOSYM )
error ();

}
if ( DEBUG SYNTACTIC ) {

debug level--;
debug (debug level, "END of operator ");

}
}
/**
* Execute the lexical analyzer.
*/
public void execute analyzer(BufferedReader br) {

inst lexical.setLineCount(0);
inst lexical.setCharCount(0);
inst lexical.assign input(br);
token = inst lexical. NOSYM ;
token = inst lexical.lexical(token000);
expressions ();

}
/**
* Get prev char back from the lexical analyzer.
* @return The StringBuffer prev char.
*/
public StringBuffer getPrevChar() {

return inst lexical.getPrevChar();

}
private void error () {

// begining action @exit
// ending action @exit

}
}

Program 3 PrefixLexSymbols.java
// Lexicon file: prefix.lex

interface PrefixLexSymbols {
int NOSYM = 0;
int EOF = 1;

}

Program 4 PrefixInstLexSymbols.java
// Lexicon file: prefix.lex

interface PrefixInstLexSymbols {
int INT = 2;
int PLUS = 3;
int MINUS = 4;
int TIMES = 5;
int DIVIDE = 6;
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int COMMA = 7;
int PERIOD = 8;

}

Program 5 PrefixInstLex.java
// Lexicon file: prefix.lex

import java.util.*;
/**
* This class contains an instance of the standard
* lexical analyzer and all tables.
*/

class PrefixInstLex extends PrefixLex implements PrefixInstLexSymbols {
// constructor
PrefixInstLex() {

nb states = 8;
state types = new int[] {

6,6,6,6,6,6,6,1

} ;
final symbols = new int[] {

INT, PLUS, MINUS, TIMES, DIVIDE, COMMA, PERIOD, NOSYM

} ;
int[] accept NULL = {

NOSYM

} ;
int[] accept 000 = {

INT, NOSYM

} ;
int[] accept 001 = {

PLUS, NOSYM

} ;
int[] accept 002 = {

MINUS, NOSYM

} ;
int[] accept 003 = {

TIMES, NOSYM

} ;
int[] accept 004 = {

DIVIDE, NOSYM

} ;
int[] accept 005 = {

COMMA, NOSYM

} ;
int[] accept 006 = {

PERIOD, NOSYM

} ;
accept symbols = new int[][] {

accept 000, accept 001, accept 002, accept 003,
accept 004, accept 005, accept 006, accept NULL

} ;
int[][] transNULL = {

{
FIRST CHAR, LAST CHAR, TRASH

}
} ;
int[][] trans000 = {

{
48, 57, 0

} ,
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{
FIRST CHAR, LAST CHAR, TRASH

}
} ;
int[][] trans007 = {

{
42, 42, 3

} ,
{

43, 43, 1

} ,
{

44, 44, 5

} ,
{

45, 45, 2

} ,
{

46, 46, 6

} ,
{

47, 47, 4

} ,
{

48, 57, 0

} ,
{

FIRST CHAR, LAST CHAR, TRASH

}
} ;
trans sizes= new int [] {

2, 1, 1, 1, 1, 1, 1, 8

} ;
trans = new int[][][] {

trans000,transNULL,
transNULL,transNULL,
transNULL,transNULL,
transNULL,trans007

} ;

String name NULL = "" ;
name token = new String[] {

name NULL, name NULL, name NULL,
name NULL, name NULL, name NULL, name NULL,
name NULL, name NULL

} ;
int[] synonymNULL = {

item NOSYM

} ;
synonyms = new int [][] {

synonymNULL, synonymNULL, synonymNULL,
synonymNULL, synonymNULL, synonymNULL, synonymNULL,
synonymNULL, synonymNULL

} ;

}
}

Program 6 PrefixLex.java
// Lexicon file: prefix.lex
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import java.io.*;
import java.util.*;

/**
* This class contains the standard lexical analyzer.
*/

public class PrefixLex implements PrefixLexSymbols {
// some constant values
protected final int INIT STATE = 1;
protected final int FINAL STATE = 2;
protected final int ACCEPT STATE = 4;
protected final int TRASH = -1;
protected final int REG STATE = 0;
protected final int FIRST CHAR = 1;
protected final int LAST CHAR = 65535;
protected final int MIN CHAR = 0;
protected final int MAX CHAR = 1;
protected final int TRANS = 2;

// flags
private boolean DEBUG LEXICAL = false;
private boolean eof = false;

// variables to be initialized in sub class
private int token;
protected int[][][] trans;
protected int[] trans sizes;
private int line count; // the current line
private int char count; // the current character
protected int nb states;
protected int[] final symbols;
protected int[][] accept symbols; // accepted symbols by state (FSA)
protected int[][] synonyms;
protected int[] state types; // state types (FSA)
protected String[] name token;

private String value; // to store the result token
private StringBuffer prev char;
private StringBuffer sb value;
private BufferedReader input;

/**
* The constructor.
*/
public PrefixLex() {

sb value = new StringBuffer(); // initialize global variables
prev char = new StringBuffer();

}
private boolean is substring(String string1, String string2, int length) {

int i;
for (i=0; (i<length) && (string1.length() >= i) && (string2.length() >= i); i++)

if (string1.charAt(i) != string2.charAt(i))

return false;

return (i == length) && (i == string2.length());
}
private boolean valid token(int token, int[] tokens) {

int i;
for (i=0; tokens[i] != NOSYM ; i++)

if (token == tokens[i])

return true;

return false;

}
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private int next state(int c, int state, int[][][] trans, int[] trans sizes) {
int u,l,m;

l=0;
u=trans sizes[state]-1;
while (l<=u) {

m=(l+u)/2;
if (c >= trans[state][m][MAX CHAR]) l=m+1;
if (c <= trans[state][m][MAX CHAR]) u=m-1;

}
if (c >= trans[state][u+1][MIN CHAR])

return trans[state][u+1][TRANS];

else

return TRASH;

}
private int find initial(int[] state types, int nb states) {

int i;
for (i=0; i<nb states; i++)

if ((state types[i] & INIT STATE) == INIT STATE)

return i;

return TRASH;

}
private int search valid token(Stack stack, StringBuffer str, int[] tokens) {

int i, j=0, k, l, final sym;
boolean found = false;
for (i=(stack.indexOf(stack.peek())-1); (i>=0) && (!found); i--) {

for (j=i, final sym = NOSYM ; (j>=0) && (final sym == NOSYM ); ) {
if ((state types[((Integer)stack.elementAt(j)).intValue()] & FINAL STATE) == FINAL STATE)

final sym = final symbols[((Integer)stack.elementAt(j)).intValue()];

else

j--;

}
for ( ; (j>=0) && (!found); ) {

if ((state types[((Integer)stack.elementAt(j)).intValue()] & ACCEPT STATE) == ACCEPT STATE) {
for (k=0; (accept symbols[((Integer)stack.elementAt(j)).intValue()][k] != NOSYM ) &&

!found; ) {
found = accept symbols[((Integer)stack.elementAt(j)).intValue()][k] == final sym;
if (!found)
k++;

}
found = false;
for (l=0;

(synonyms[(accept symbols[((Integer)stack.elementAt(j)).intValue()][k])][l] !=

NOSYM ) && !found; ) {
found = valid token(

synonyms[(accept symbols[((Integer)stack.elementAt(j)).intValue()][k])][l],

tokens) &&

is substring(new String(str),

name token[synonyms[(accept symbols[((Integer)stack.elementAt(j)).intValue()][k])][l]],

j);
if (!found)

l++;

else

token = synonyms[(accept symbols[((Integer)stack.elementAt(j)).intValue()][k])][l];

}
if (!found) {
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found = valid token(accept symbols[((Integer)stack.elementAt(j)).intValue()][k], tokens);
if (found)

token = accept symbols[((Integer)stack.elementAt(j)).intValue()][k];

}
if (!found)

j--;

} else

j--;

}
}
return j;

}
/**
* Assign the input reader.
*/
public void assign input(BufferedReader input) {

this.input = input;
eof = false;
line count = 1;
char count = 1;

}
private char read char() {

int ret c = -1;
try {

ret c = input.read();

} Catch(IOException e) {
// Return the equivalent of EOF when an IO exception occurs
ret c = -1;

}
if (ret c == -1)

eof = true;

return (char)ret c;

}
/**
* Get the look ahead back
* @return The content of prevchar.
*/
public StringBuffer getPrevChar() {

return prev char;

}
/**
* Get the next token from input stream and write it to value (global)
*
* @return The kind of the found token.
*/
public int lexical(int[] tokens) {

int first state, state;
int i=0, j=0, k=0;
char c;

Stack stack = new Stack();
StringBuffer str = new StringBuffer();
StringBuffer buf = new StringBuffer();

sb value.setLength(0);

token = NOSYM ; // initialize the return variable
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if ((state = find initial(state types, nb states)) == TRASH)

System.exit(-1);

stack.push(new Integer(state));
first state = state;

if (prev char.length() > j)

c = prev char.charAt(j++);

else

c = read char();

while ((!eof) &&

((state=next state(c, first state, trans, trans sizes)) == TRASH)) {
if (c == ’\n’) {

line count++;
char count = 1;

} else

char count++;

if (prev char.length() > j)

c = prev char.charAt(j++);

else

c = read char();

}
stack.push(new Integer(state));
while ((!eof) && (state != TRASH) && (c >= FIRST CHAR) && (c <= LAST CHAR)) {

str.append(c);
i++;

if ((state != TRASH) && (trans sizes[state] == 1))

c = ’\0’;
else {

if (prev char.length() > j)

c = prev char.charAt(j++);

else

c = read char();

state = next state(c, state, trans, trans sizes);
stack.push(new Integer(state));

}
}
// makes sure TRASH state ends the stack, if the character is not
// visible otherwise, adds the last character read in the list of
// processed characters
if ((eof) || (c < FIRST CHAR) || (c > LAST CHAR))

stack.push(new Integer(TRASH));

else {
str.append(c);
i++;

}
// pops the stack until the accepting state is found
k = search valid token(stack, str, tokens);

if (k < 0)

k = 0;

for (i=0; i<k; i++) {
sb value.append(str.charAt(i));
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if (str.charAt(i) == ’\n’) {
line count++;
char count = 1;

} else

char count++;

}
// copy the remaining not used characters from str into buf to
// keep them for the next run
for ( ; i<str.length(); i++)

buf.append(str.charAt(i));

// do the same with buf
for ( ; j<prev char.length(); j++)

buf.append(prev char.charAt(j));

stack.removeAllElements();
str.setLength(0);
prev char.setLength(0);

prev char = buf;
value = new String(sb value);

if ((token == NOSYM ) && (eof))

token = EOF ;

// print debugging information
if ( DEBUG LEXICAL )

System.out.println(" token=" + token +

" eof=" + eof +
" value=" + value +
" prev char=" + prev char);

return token;

}
public String getValue() {

return value;

}
public int getLineCount() {

return line count;

}
public void setLineCount(int line count) {

this.line count = line count;

}
public int getCharCount() {

return char count;

}
public void setCharCount(int char count) {

this.char count = char count;

}
}
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