Nabil Abdennadher, Gilbert Babin, Peter Kropf, and Pierre Kuonen. "A Dynamically Configurable Environment For High Performance Cormr
in High Performance Computing 2000 (HPC 2000). Washinton, DC, USA. April 2000. pp. 236-241.

A DYNAMICALLY CONFIGURABLE ENVIRONMENT FOR HIGH
PERFORMANCE COMPUTING

Nabil Abdennadher? Gilbert Babin! Peter Kropff and Pierre Kuonen*

*

GRIP Research Group - DI - EPFL
Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland
{nabil.abdennadher,pierre.kuonen}@epfl.ch

KEYWORDS

High Performance Computing, Metacomputing,
Web Operating System (WOS™), Automatic config-
uration, Resource localization.

ABSTRACT

Current tools available for high performance com-
puting require that all the computing nodes used in
a parallel execution be known in advance: the exe-
cution environment must know where the differen-
t “chunks” of programs will be executed, and each
computer involved in the execution must be prop-
erly configured. In this paper, we describe how the
Web Operating System (WOS™) environment may
be used to dynamically locate available computers
to perform such computations and how these com-
puters are dynamically configured.

The WOS™ (Kropf 1999) is a virtual operating
system which is suitable for supporting and manag-
ing distributed/parallel processing on the Internet.
Central to the WOS™ architecture are the commu-
nication protocols, which may be seen as the “glue”
of the whole environment. Communication between
nodes is realized through a generic service proto-
col and a simple discovery/location protocol (Babin
et al. 1998).

The service protocol may be versioned to sup-
port specialized services. In the present research,
we focus on the design of such a version for High
Performance computing. This version essentially
locates nodes able to execute parallel programs, i-
dentifies nodes available for participating in the
parallel execution, and sets up an execution envi-
ronment on the dynamically selected set of nodes.

TDép, d’informatique
Université Laval
Québec, Canada G1K 7P4
babin@ift.ulaval.ca

JtDép. d’informatique et de rech. op.
Université de Montréal
Montréal, Canada H3C 3J7
kropf@iro.umontreal.ca

INTRODUCTION

Advances in networking technology and computa-
tional infrastructure changed the HPC landscape.
Tightly coupled, dedicated processors are replaced
by loosely coupled independant machines connect-
ed via standard local or wide area networks. Cen-
tralized High Performance (HP) applications de-
veloped with proprietary, closed-source, hardware-
dependant environments are more and more re-
placed by distributed “components” sharing and
managing resources spread over a networked envi-
ronment.

The new HP distributed platforms are accessed
from the user’s desktop in a uniform and user-
friendly manner, such as provided by the Web’s in-
terfaces. The network environment combines mul-
tiple administration domains, heteregeneous com-
puting platforms and security policies. Sharing
and managing the resources spread over this net-
work becomes therefore a cumbersome task. This
problem is called the wide-area computing prob-
lem (Lindahl ez al. 1998).

The wide-area-computing problem can be
solved in an ad hoc manner for each application :
scripts and various network tools are provided for
this purpose. However, these solutions are very lim-
ited, lack scalability, and require a specific knowl-
edge of the architecture of the machines.

From a computer science point of view, the
right way to solve the problem is to build a Network
Operating System (NOS) for the network. This
NOS would provide high level means for sharing
and managing complex resources distributed over
the network. We think that metacomputing is one
promising approach to reach that goal. The pur-
pose of metacomputing is to give the illusion of
a single machine by transparently managing data
movement, scheduling application components on
available resources, detecting faults and insuring

Nabil Abdennadher, Gilbert Babin, Peter Kropf, and Pierre Kuonen. "A Dynamically Configurable Environment For High Performance Cormr
in High Performance Computing 2000 (HPC 2000). Washinton, DC, USA. April 2000. pp. 236-241.

that the user’s data and physical resources are pro-
tected. Globus (Foster and Kesselman 1997; The
Globus Project), Legion (Grimshaw et al. 1997, Lin-
dahl et al. 1998), and NetSolve (Casanova and
Dongarra 1997) are concrete exemples of research
projects in this field.

However, requirements for HPC are more than
just transparent management and use of resources,
distributed over the network; the metacomputing
environment selected must meet the performance
requirements of the application from a computa-
tional and communication standpoint. The meta-
computing approaches cited above do support HPC
by developing there own, closed-source, HP execu-
tion environment. This, in effect, binds the user to
the HP execution tools provided by the metacom-
puting environment selected. We argue that, al-
though this approach favors transparency, it does
so at the expense of portability and efficiency. The
approach we propose is to use metacomputing tool-
s whenever useful and to avoid them when more
efficient tools may be used instead. This way, we
can always select the most effective tools for a spe-
cific context. Furthermore, we can reuse existing
tools, without having to rewrite them for the sake
of transparency. This approach is supported by
the Web Operating System (WOS™) (Kropf 1999;
Plaice and Kropf 1999) which can assist users of H-
P and, more generally, parallel applications during
the configuration stage, and select the most effec-
tive execution environment for the execution stage.
The WOS™ can be seen as a collection of service
classes. Our contribution is to develop a new ser-
vice class for the configuration and execution of HP
applications. This service class assists users during
the configuration step by searching and locating the
most suitable sites for the execution of their appli-
cations.

This paper is organized as follows : Section 2
provides a definition of metacomputing. Section 3
analyzes metacomputing functionalities in the con-
text of HP applications. Sections 4 and 5 respec-
tively describe the architecture of the WOS™ and
the proposed HP service class. Section 6 provides
additional information regarding the status of the
project and concludes the paper.

A VISION OF METACOMPUT-
ING

We share Buyya’s (Buyya 1999) definition of meta-
computer : a set of computers sharing resources

and acting together to solve a common problem.
Our vision of a metacomputer comprises thousand-
s of computers and terabytes of memory in a loose
confederation, tied together by a network. The user
has the illusion of a single powerful computer; he
manipulates objects representing data resources,
applications or physical devices.

At this point, it is important to distinguish be-
tween a parallel computer and a metacomputer.
The main difference is the behavior of the compu-
tational nodes. A metacomputer is a dynamic en-
vironment that has some informal pool of indepen-
dant nodes, each relying on its own complete oper-
ating system, and which can join or leave the en-
vironment whenever it desires. According to this
definition, some parallel computers, such as the IB-
M SP series or the Swiss-T'1 machine (Kuonen and
Gruber 1999) can be considered as local metacom-
puters, which is not the case for the Cray T3D. In
addition, a metacomputer is distinguished from a
simple collection of computers by a software layer
(middleware) which transforms a collection of inde-
pendant resources into a single, virtual and coher-
ent machine.

To better understand what metacomputing is,
we first introduce the concept of Grid Computing,
which may be compared to the electricity grid (Fos-
ter and Kesselman 1999) : when we power up
our computer or television, we don’t care about
the location of the electricity generator that effec-
tively provides energy to the concerned appliance.
In the same manner the national electricity grid
routes electricity across hundred of miles, the grid
computer, i.e. a set of connected supercomputers,
should allow the transparent execution of a pro-
gram by searching and allocating the resources it
requires. It is the grid computer’s responsability to
support transparent security, scheduling, data dis-
placement, fault tolerance, conversion, etc. Meta-
computing is a generalization of Grid Computing
where the supercomputers may be replaced by off-
the-shelf computers.

A metacomputer should provide four basic ser-
vices (Lindahl et al. 1998) :

1. Transparent Remote Execution. By using a
metacomputer, a user should be able to exe-
cute his application by simply typing a com-
mand line. The system should select the appro-
priate node(s) among those the user is allowed
to use, transfer binary code and, launch execu-
tion. The transfer of the input data and the s-
torage of the output data should be done trans-

Nabil Abdennadher, Gilbert Babin, Peter Kropf, and Pierre Kuonen. "A Dynamically Configurable Environment For High Performance Cormr
in High Performance Computing 2000 (HPC 2000). Washinton, DC, USA. April 2000. pp. 236-241.

parently by the metacomputer. Finally, the us-
er should not know about the queuing system
of the selected executing node(s).

2. Transparent Access Distributed File System. A
metacomputer should allow transparent access
to a file, regardless of its location. NFS is a
well known exemple of a distributed file sys-
tem (Levy and Silberschatz 1990). However,
NFS requires super-user configuration. The
World Wide Web is another well known dis-
tributed filesystem limited to read-only access.

3. Wide-Area Parallel Processing. The goal is to
execute a single parallel application by using
multiple remote resources (parallel machines).
The application should tolerate the latency in-
volved by the transfert of data between the re-
mote sites. Problems, well known in parallel
processing, such as task scheduling and assign-
ment, load balacing and fault tolerance should
be taken into account by metacomputing.

4. Meta-Applications. Meta-Applications are com-
posed of a set of connected legacy applications
that were previousely executed as standalone
applications. The output of the first applica-
tion is the input of the second, etc. The meta-
application can thus be represented by a graph,
where nodes are stand-alone applications and
edges are data communication links between
nodes. Beside the scheduling problem already
encountered above, there is another issue : da-
ta are geographically distributed and it is the
metacomputer’s responsability to decide when
to migrate computation to the data or vice ver-
sa.

METACOMPUTING FOR HIGH
PERFORMANCE COMPUTING

The approach we propose is to take advantage of
some services provided by metacomputing environ-
ments during the configuration phase : evaluation
of the workload on each node, localization of the
resources required by the different modules of the
parallel program, assignment and scheduling of the
different tasks on the nodes, fault tolerance config-
uration, etc. These fonctionalities are provided by
the Wide-Area Parallel Processing service.

For this purpose, we propose a versioned meta-
computing environment based on the Web Operat-
ing System (WOS™) which will assist users during

the configuration stage of the parallel program exe-
cution. The WOS™ provides the user with the nec-
essary infrastructure to search for the most ade-
quate resources required by the parallel program.
The HP version of WOS™ is able to select, among
all the WOS™ nodes, the ones that satisfy the con-
straints imposed by the application as expressed by
the user : workload threshold, network and ma-
chine architecture, software resources that must be
available on the node (JAVA, PVM, DBMS, etc.),
date and time of execution, etc. The execution en-
vironment to use is also managed as a resource.
Therefore, we can dynamically select the most ap-
propriate execution environment during the config-
uration stage, based on the user’s and the applica-
tion’s requirements.

WEB OPERATING SYSTEM

The Web Operating System (WOS™) was develope-
d to provide a user with the possibility to submit a
service request without any prior knowledge about
the service (where it is available, at what cost, un-
der which constraints) and to have the service re-
quest fulfilled within the user’s desired parameters
(time, cost, quality of service, etc.). In other word-
s, the WOS™ is designed to enable transparent us-
age of network-accessible resources, whenever a us-
er requires a service, wherever the service is avail-
able. These services may be specialized hardware
or software components, or a combination of both. A
user needs only to understand the WOS™ interface,
and does not need to understand how the service
request is fulfilled. Therefore the WOS™ provides a
computation model and the associated tools to en-
able seamless and ubiquitous sharing, and interac-
tive use of software and hardware resources avail-
able on WOS™ compliant nodes of the Internet.

These features make the WOS™ a very attrac-
tive environment for metacomputing :

e The WOS™ environment can serve as a meta-
computing brokerage service, by managing re-
source reservation requests and by launching
the execution at the required time (Transpar-
ent Remote Execution).

e The WOS™ environment can be used to auto-
matically discover all required resources, hard-
ware and software, for the remote execution of
a program (Transparent Remote Execution and
Transparent Access Distributed File System).

Nabil Abdennadher, Gilbert Babin, Peter Kropf, and Pierre Kuonen. "A Dynamically Configurable Environment For High Performance Cormr
in High Performance Computing 2000 (HPC 2000). Washinton, DC, USA. April 2000. pp. 236-241.

The WOS™ computation model is based on e-
duction, where a query is only processed when
needed and prior results are stored in a local
database called a warehouse, where they can be ac-
cessed later on.

THE HIGH PERFORMANCE
WOSP VERSION

Central to the WOS™ architecture are the com-
munication protocols, which may be seen as the
“glue” of the whole environment. Communication
between nodes is realized through a simple dis-
covery/location protocol (WOSRP) and a generic
service protocol (WOSP). The WOSP is in fact a
generic protocol definied through a generic gram-
mar (Babin et al. 1998). A specific instance of this
generic grammar, also referred to as a version of
WOSP, provides the communication support for a
service class of WOS™. The semantics of a version
of WOSP depends directly on the service class it
supports. In other words, knowing a specific ver-
sion of WOSP is equivalent to understanding the
semantics of the service class supported by that
version. In the case of High Performance Comput-
ing, communication services are required (1) to lo-
cate potential compute nodes with the appropriate
set of resources (hardware and software) and to re-
serve these resources, i.e., the configuration stage
and (2) to launch the execution of the parallel pro-
gram, i.e., the execution stage.

The Configuration Stage

This stage requires the most involvment from the
WOS™. It is initiated at the user’s request. As a
starting point, the user specifies parameters and
constraints to execute a parallel program, for ex-
ample, date and time of execution, program to run,
metacomputing environment to use (JAVA, PVM,
MPI, etc.). From that point on, the control is passed
to the WOS™.

The WOS™ performs the following tasks, if
needed :

1. Locate other WOS™ nodes. This occurs only
when an insufficiant number of WOS™ nodes
that can perform parallel computing are local-
ly known. In this case, the WOS™ will use a
discovery/location protocol (WOSRP) to identi-
fy new nodes that understand the version of

WOSP used for High Performance Computing
(i.e., the version of WOSP we are currently de-
scribing).

2. Locate nodes that can participate in the current
request. In this step, we want to identify nodes
that can be used to answer the user’s specif-
ic needs and requirements. We use the search
approach developed for the WOS™ (Unger et al.
1998). The syntax associated to this search
process corresponds to the “query command”
construct in Fig. 1. Since one execution may
require different resource sets, the search pa-
rameters will provide one set of parameters
(WOS_Params) for each of these distinct re-
source sets.

When it receives such a query, a WOS™ node
will identify all the resource sets it can provide.
The reply that the node builds, includes only
those resource sets that it can provide (Fig. 1).

3. Collect replies from all the nodes. The request-
ing WOS™ node collects all replies. At this
point, it will determine which nodes will be
asked to participate in the execution. Note that
it may be necessary to launch additional search
steps (1 and 2 above) to complete the configura-
tion.

4. Reserve the resources. Here, the WOS™ simply
indicates to the selected nodes that it will use a
certain set of resources, based on the informa-
tion received. This corresponds to the “setup
command” construct in Fig. 1. A node can still
reject or accept a reservation request (Fig. 1).

The search results are preserved in the local
warehouses. This way, subsequent executions with
the same (or similar) parameters will reuse the re-
sults rather than perform the whole search again.

The Execution Stage

Once the configuration stage is completed, the
WOS™ node can send a command to every node to
start the execution (Fig. 1). The WOS™ just gives
the starting signal and waits for the results.

CONCLUSION

This article has discussed how the WOS™ envi-
ronment could be adapted to support High Perfor-
mance applications. More specifically, a detailed de-
scription of how WOS™ nodes should interact was

Nabil Abdennadher, Gilbert Babin, Peter Kropf, and Pierre Kuonen. "A Dynamically Configurable Environment For High Performance Cormr
in High Performance Computing 2000 (HPC 2000). Washinton, DC, USA. April 2000. pp. 236-241.

E command_id

exec_Parallel

0@@ 3 (ORI s [KCERLED s | ’

O et >CErD>

(ORI s FCERLE s | ’

® G (e)~ OG> D@D

@ O-Ceply_to >-CCRLED st J-CCRLED-(/) s KCERLE s |

[

@ D~Treply_to_msg>CCRLE>_reply_toid |CCRLE>-(D 's CCRLE> s |

reply_to_id H command_id

O >G> O ()~ —O-@D> DL F@D

. reserved .
rejected
e paraie >3]
o WOS_params @ parameter)—@-(value
execution command E exec_Parallel H command_id @ H

parameter)—@-(value

o reservation_no

CRLED

|_resevation.id |<CERLED(Y) s FCCRLED> s |

Figure 1: WOSP for High Performance Computing

presented. It was also discussed how the proposed
version of WOS™ can dynamically select the most
appropriate execution environment for the paral-
lel program to be run. This new service class en-
ables the support of Wide-Area Parallel Processing
within the WOS™ environment. The search method
adopted can satisfy the constraints imposed by the
user and is general enough to take into consider-
ation all kinds of constraints. Finally, it is impor-
tant to point out that, altough the WOS™ allows
for the dynamic selection of the execution environ-
ment most suitable for a specific application, within
specific constraints, it is not involved in the execu-
tion stage per se. As a consequence, an application
could take advantage of a new, possibly more effi-
cient execution environment without any modifica-
tion of the WOS™itself. We plan to implement this
version of WOSP, integrate it into the WOS™ envi-
ronment, and conduct a significantly large series of

experimentations in the near future.

References

Babin, G.; P. Kropf; and H. Unger. 1998. “A
two-level communication protocol for a Web Operat-
ing System (WOS™) (Visteras, Sweden, Aug.).” In
IEEE Euromicro Workshop on Network Computing,
939-944.

Buyya, R. 1999. High performance cluster com-
puting : Architectures and systems, vol. 1. Prentice
Hall PTR, Upper Saddle River, N.J., USA.

Casanova, H. and J. Dongarra. 1997. “NetSolve:
A network server for solving computational science
problems.” International Journal of Supercomputer
Applications and High Performance Computing 3,
no. 11: 212-223.

Nabil Abdennadher, Gilbert Babin, Peter Kropf, and Pierre Kuonen

. "A Dynamically Configurable Environment For High Performance Corr

in High Performance Computing 2000 (HPC 2000). Washinton, DC, USA. April 2000. pp. 236-241.

Foster, 1. and C. Kesselman. 1997. “Globus: A meta-
computing infrastructure toolkit.” International
Journal of Supercomputer Applications.

Foster, 1. and C. Kesselman, eds. 1999. The Grid :
Blueprint for a new computing infrastructure. Mor-
gan Kaufmann, San Francisco, CA, USA.

Grimshaw, A.; W. Wulf; J. French; A. Weaver; and
P. Reynolds. 1997. “The Legion vision of a World-
wide Virtual Computer.” CACM 40, no. 1 (Jan.).

Kropf, P. 1999. “Overview of the WOS project (San
Diego, CA, USA, Apr.).” In 1999 Advanced Simula-
tion Technologies Conferences (ASTC 1999).

Kuonen, P. and R. Gruber. 1999. “Parallel comput-
er architectures for commodity computing and the
Swiss-T'1 machine.” EPFL-Supercomputing Review,
no. 11 (Nowv.): 3—11.

Levy, E. and A. Silberschatz. 1990. “Distributed file
systems: Concepts and examples.” ACM Computing
Surveys 22, no. 4 (Dec.): 321-374.

Lindahl, G.; A. Grimshaw; A. Ferrari; and K. Hol-
comb. 1998. Metacomputing — what’s in it for me ?
http://legion.virginia.edu/papers/why.pdf, last visit-
ed on Jan. 20, 2000.

Plaice, J. and P. Kropf. 1999. “WOS communi-
ties — interactions and relations between entities
in distributed systems (Rostock, Germany, June).”
In Distributed computing on the Web (DCW’99).

The Globus project. http://www.globus.org, last vis-
ited on Jan. 20, 2000.

Unger, H.; P. Kropf; G. Babin; and T. Bohme. 1998.
“Simulation of search and distribution methods for
jobs in a Web operating system (WOS™) (Boston,
MA, USA, Apr.).” In High Performance Computing
Symposium ’98, Tentner, A., ed., SCS International.

BIOGRAPHIES

Nabil Abdennadher received the engineering de-
gree from the Ecole Nationale des Sciences de
I'Informatique (Tunis, Tunisia), and the Ph.D. de-
gree from University of Valenciennes (France).
From 1992 to 1995, he was Assistant Professor
at Université de Tunis II and from 1995 to 1998,
he was Associate Professor at the same Univesi-
ty. Since 1999, he is Research Scientist the Swiss
Federal Institute of Technology, Lausanne (EPFL;
Switzerland). His major research interests include

Metacomputing, Parallel Programming, Object-
Oriented Technology, High Performance Computing
(HPC), and Web-Supercomputing. He worked on
the parallelization of several specific applications :
Text-To-Speech synthesis, OCR for Arabic printed
characters, DataBase Queries, Pattern Recognition.
He worked also on the problem of mapping and load
balancing.

Gilbert Babin received the B.Sc and M.Sc. from U-
niversité de Montréal (Canada), and the Ph.D. from
Rensselaer Polytechnic Institute (USA). Since grad-
uating in 1993, he has been a faculty member at
Université Laval (Canada), where he currently is
Associate Professor. He has been working on the
integration of heterogeneous, distributed databas-
es using reactive agents and a central knowledge
repository. Some of his work has been published in
IEEE Transactions. His current interests include
the Web Operating System (WOS™), trust manage-
ment and e-commerce.

Peter Kropf received the M.Sc. and Ph.D. degrees
from University of Bern (Switzerland). Subse-
quently, he was a research scientist at the Uni-
versity of Bern for several years. From 1994 to
1999, he has been Assistant and Associate Pro-
fessor at Université Laval (Canada). In 2000, he
joined Université de Montréal (Canada) as an Asso-
ciate Professor. He has been carrying out research
in parallel computing for over ten years, particu-
larly in the field of mapping and load balancing.
Current projects especially include Internet com-
puting and e-commerce, and the efficient use of par-
allel computing in real world applications. His re-
search interests include Internet computing, par-
allel/distributed computing tools, networking and
simulation.

Pierre Kuonen obtained the diploma of electrical
engineering from the Swiss Federal Institute of
Technology, Lausanne (EPFL; Switzerland) in Jan-
uary 1982. After having worked during five years
in industry (petroleum and CAD development) he
joined, in 1988, the Computer Science Theory Lab-
oratory of the Computer Science Department of
EPFL. He was involved in teaching and research on
parallel programming and Computer Science Theo-
ry. He obtained the Ph.D. degree in 1993. Since
1994 he has been a scientific collaborator, heading
the Parallel Computing Research Group (GRIP) of
the Computer Science Department of EPFL. He is
senior lecturer in parallel computation courses and
manages several European and national research
projects. Pierre Kuonen is author or co-author of
more than 25 scientific publications.

	reference: Nabil Abdennadher, Gilbert Babin, Peter Kropf, and Pierre Kuonen. "A Dynamically Configurable Environment For High Performance Computing." in High Performance Computing 2000 (HPC 2000). Washinton, DC, USA. April 2000. pp. 236-241.

