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Abstract

Several variants and generalizations of the Or-opt heuristic for the Symmetric Trav-

eling Salesman Problem are developed and compared on random and planar instances.
Some of the proposed algorithms are shown to significantly improve upon the standard
2-opt and Or-opt heuristics.
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1 Introduction

The Symmetric Traveling Salesman Problem (STSP) is defined on a graph G = (V,E),
where V = {1, . . . , n} is a vertex set and E = {(i, j) : i, j ∈ V, i < j} is an edge set.
With each edge (i, j) is associated a cost cij . The STSP consists of determining a least
cost Hamiltonian cycle (or tour) on G. Over the past 50 years several exact and heuristic
algorithms have been proposed for this problem. Branch-and-cut methods constitute the
favorite exact solution methodology. These are rooted in the semilar paper of Dantzig,
Fulkerson and Johnson (1954) and have culminated recently in sophisticated implemen-
tations capable of handling instances with thousands of vertices (Applegate et al., 2003).
For surveys see Lawler et al. (1985) and Gutin and Punnen (2002).

Several heuristics have also been proposed for the STSP. Here we focus on two main
classes of tour improvement mechanisms: edge exchanges (EE) and chain exchanges (CE).
The most famous EE method is called r-opt. At a given iteration it removes r edges from
the current tour and attempts to find a better reconnection of the r remaining chains.
The complexity of an r-opt iteration is O(nr). It is Croes (1958) who proposed the first
systematic 2-opt method while the generalized concept was put forward by Lin (1965). A
dynamic r-opt heuristic in which the value of r is allowed to vary during the search was
developed by Lin and Kernighan (1973). Sophisticated implementations of this approach
have been devised by Johnson and McGeoch (1997, 2002) and by Helsgaun (2000). These
probably constitute the best available heuristics for the STSP. One of the best known CE
methods, called Or-opt, is due to Or (1976). It attempts to improve the current tour
by first moving a chain of three consecutive vertices in a different location (and possibly
reversing it) until no further improvement can be obtained. The process is then repeated
with chains of two consecutive vertices, and then with single vertices. Each iteration of
Or-opt requires O(n2) operations.

Despite the computational superiority of some Lin-Kernighan implementations, simpler
heuristics such as 2-opt, 3-opt and Or-opt remain popular due to their ease of implementa-
tion and their reasonably good performance. These are often used as a subroutine within
improvement heuristics for more involved problems, such as the Vehicle Routing Problem

(Laporte and Semet, 2002). A common step in a vehicle routing heuristic is to post-
optimize individual vehicle routes. Because this operation is frequently applied, it makes
sense to seek a fast but not necessarily highly accurate tour improvement heuristic.

The purpose of this paper is to develop and compare a number of Or-opt variants for the
STSP. As will be shown, several versions are superior to the original implementation made
by Or, and some 2-opt and Or-opt hybrids are also quite appealing. When conducting this
study we have limited our options to “low complexity” heuristics, i.e., EE or CE heuristics
for which the complexity of an iteration is O(n2). We have also restricted ourselves to the
symmetric version of the problem because the heuristics under consideration are imple-
mented quite differently in the asymmetric case and their computational behaviour is also
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Table 1: FI/BI solution cost and CPU time ratios
FI/BI FI/BI
Cost CPU

2-opt (random) 1.03*** 0.26***

2-opt (planar) 0.99*** 1.10***

Or-opt (random) 0.98*** 1.21***

Or-opt (planar) 1.00 1.09***

*** indicates a 0.005 significance level.

different (Johnson et al., 2002).

In Section 2 we describe some variants of the Or-opt heuristic. Computational results
and analyses are presented in Section 3.

2 Variants of the Or-opt heuristic

There exist a number of misconceptions and contradictions regarding the Or-opt heuristic.
Golden and Stewart (1985) who applied it as a post-optimizer after their CCA construction
procedure conclude: “In general, the Or-opt procedure yields solutions that are comparable
to the 3-opt in terms of quality of solution in an amount of time closer to that of the 2-
opt procedure” (page 232). In contrast, Johnson and McGeoch (2002) who performed
an extensive comparison of several STSP heuristics state that “Or-opt no longer appears
to be a serious competitor” (page 414). As will be seen, our own tests indicate that
2-opt provides significantly better solutions than Or-opt when two basic and similarly
implemented versions of these heuristics are applied to an arbitrarily generated initial
solution.

The number of ways to implement even the most basic STSP heuristics is very large. In
addition, computational comparisons may be tainted not only by implementation choices
but also by the instances used to conduct the tests. One basic alternative when assessing
the quality of an improvement heuristic is whether to start from an arbitrary tour or
from a “good” tour produced by a construction method. Another question is whether to
implement the first improving (FI) move at each iteration or the best improving (BI) move.
These issues were partially answered by Hansen and Mladenović (2004) who concluded that
for 2-opt, FI is slightly better but much faster than BI if one starts from an arbitrary tour,
but the reverse result holds if a good tour is used as a starting point. We have implemented
the FI and BI variants of 2-opt and Or-opt on 1000 random and planar 100-vertex instances
starting from an arbitrary solution. Our results are summarized in Table 1. Following these
tests we have opted to conduct all our experiments with FI which generally provides better
costs with Or-opt.
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In addition to these basic implementation alternatives, Johnson and McGeoch (2002)
describe four speed up rules: 1) avoiding search space redundancies: when implementing
r-opt, time can be saved by avoiding some exchanges that cannot improve the solution;
2) bounded neighbour lists: only consider the p closest neighbours of a vertex when per-
forming reconnections (this rule was implemented by Zweig, 1995); 3) “don’t look” bits:
avoid considering certain moves if such moves have proved fruitless in the past; 4) tree-based
tour representation: use a tree-based representation of the tour to accelerate computations.

A first contribution of this article is to generalize the Or-opt algorithm to allow for the
relocation of chains of length exceeding 3. We denote by Or(k1, . . . , ks) an implementation
of Or-opt which successively relocates chains of length k1, . . . , ks. Thus the classical Or-opt
algorithm is Or(3,2,1).

A second contribution applicable to Or(k1, . . . , ks) is to consider every kt-length chain
rooted at the same vertex i before moving on to the successor of i. We call this variant
vertex first (VF) as opposed to the standard tour first (TF) implementation, and we denote
it as Or (k1, . . . , ks)

VF. The TF and VF implementations of an Or-opt iteration using FI
are described as follows.

Iteration of Or(k1, . . . , ks)

for each kt

for each vertex i in tour

for each edge e remaining in tour

compute cost of removing e and reconnecting tour

with kt-length chain rooted at i

if improvement found

implement improvement

break loop on i

end if

end for

end for

end for

Iteration of Or(k1, . . . , ks)
VF

for each vertex i in tour

for each kt

for each edge e remaining in tour

compute cost of removing e and reconnecting tour

with kt-length chain rooted at i

if improvement found
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Figure 1: Cost impact of a chain relocation for a given orientation

implement improvement

break loop on kt

end if

end for

end for

end for

A third contribution is to avoid performing some chain relocations when the expected
gain is deemed insufficient. As shown in Figure 1, removing the chain (i2, . . . , i3) and
reconnecting i1 with i4 generates a gain equal to g = ci1i2 +ci3i4−ci1i4 . Similarly, relocating
the chain between j1 and j2 (in the depicted orientation) yields a loss equal to ` = ci2j2 +
ci3j1−cj1j2 . While g is known as soon as the chain is considered for relocation, the incurred
loss ` is not known a priori because it depends on the pair of vertices j1 and j2 between
which the chain will be relocated. However, one can roughly approximate the average value
of ` as ¯̀ = 2c̄ − d̄, where c̄ is the average edge cost and d̄ is the average cost of an edge
on the tour. In our implementation we perform a chain relocation only if g > λ ¯̀, where
λ is a user-controlled parameter. A larger value of λ means that fewer exchanges will be
attempted, resulting in shorter computing times but possibly worse solutions. This Or-opt
variant will be denoted Or(k1, . . . , ks)

λ or Or(k1, . . . , ks)
λ,VF, depending on whether TF or

VF is applied. In the above pseudo-code descriptions, the central operation becomes:

if g > λ¯̀

compute cost of removing e and reconnecting tour

with kt-length chain rooted at i

if improvement found
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implement improvement

break loop on i (TF) or kt (VF)

end if

end if

This test is somewhat similar to the “don’t look” bit just described except that it is applied
to the likely net gain associated with a future move as opposed to a cost already observed
in the past.

A fourth contribution of this article is to assess the empirical performance of the
new Or-opt variants. These include Or(k1, . . . , ks), Or(k1, . . . , ks)

p, Or(k1, . . . , ks)
λ,

Or(k1, . . . , ks)
VF, and Or(k1, . . . , ks)

λ,VF. The Or(k1, . . . , ks)
p variant denotes a bounded

neighbour list heuristic, such as the one used by Zweig, p being the number of neighbours
considered. We have also studied different hybrid heuristics H1 + H2 consisting of iter-
atively applying heuristic H1 and heuristic H2. Using this notation, the Bentley (1992)
2.5-opt heuristic is referred to as 2-opt+Or(1). Comparisons of the proposed algorithms
were made with Or(3, 2, 1), and the best algorithms were also compared with 2-opt.

3 Computational results

The procedures just described were coded in C and run on a Sun Ultra-10 computer (300
MHz). We have generated two classes of instances: random instances in which the cij

values were generated according to a discrete uniform distribution on [0, 100], and planar
instances in which (Xi, Yi) coordinates were first generated according to a discrete uniform
distribution at integer coordinate points of the [0, 100]2 square and each cij was computed

as b[(Xi − Xj)
2 + (Yi − Yj)

2]
1
2 c. In random instances the expected cost c̄ is equal to 50

whereas in planar instances it is 52.23. The value of d̄ is dynamically updated as the
average edge cost on the current tour. In each case we have generated 1000 instances of
size n = 100. All reported statistics are average values over the 1000 instances. We have
performed left-tailed significance tests for paired comparisons (test 10 in Kanji, 1994). The
significance levels are * (α = 0.025), ** (α = 0.01), and *** (α = 0.005).

We have conducted several experiments to determine the most suitable value of λ. As
expected, a larger λ value produces higher costs and shorter CPU times. Thus, setting
λ = 0.25 yields slightly shorter times but much worse solutions; conversely, setting λ = 0
does not have much impact on solution quality but requires larger CPU times. We found
that λ = 0.1 offers a good compromise for both random and planar instances. In the
Or(k1, . . . , ks)

p experiments, we have used p = 15 as in Zweig (1995).

Tables 2 and 3 provide computational results for five Or(k1, . . . , ks) variants over random
and planar instances, respectively. All entries are average values normalized with respect
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Table 2: Comparison of several variants of the Or-opt heuristic on random instances (average statistics over 1000
instances normalized with respect to Or(3, 2, 1))

Or(k1, . . . , ks) Or(k1, . . . , ks)
p=15 Or(k1, . . . , ks)

λ=0.1 Or(k1, . . . , ks)
VF Or(k1, . . . , ks)

λ=0.1,VF

k1, . . . , ks Cost CPU Cost CPU Cost CPU Cost CPU Cost CPU

1 173.74 49.32*** 321.09 47.71*** 264.83 1.56*** 173.22 51.56*** 267.89 1.78***

2 130.11 59.33*** 500.00 47.22*** 219.44 1.23*** 129.53 61.02*** 221.50 1.95***

3 119.93 61.87*** 481.05 47.23*** 193.63 1.87*** 119.40 61.58*** 192.67 1.62***

4 113.39 64.00*** 481.13 47.31*** 177.31 2.43*** 112.75 65.67*** 178.18 2.67***

2,1 119.25 77.13*** 246.72 48.34*** 186.55 2.44*** 110.23 102.97 168.70 2.74***

3,2,1 100.00 100.00 213.32 49.20*** 149.94 2.79*** 88.74*** 153.41 131.10 4.16***

4,. . . ,1 89.901*** 118.14 196.30 50.10*** 131.06 3.40*** 77.25*** 196.68 112.12 4.78***

5,. . . ,1 83.23*** 134.12 183.40 50.76*** 119.56 3.32*** 70.26*** 248.84 100.28 5.62***

9,7,5,3,1 78.39*** 131.29 185.44 51.32*** 110.13 4.23*** 98.28*** 69.17*** 145.50 2.87***

10,8,6,4,2 76.99*** 132.91 206.32 50.95*** 107.53 4.45*** 96.85*** 68.95*** 141.59 2.94***

10,8,6,4,2,1 75.65*** 141.75 173.56 52.27*** 104.83 5.10*** 96.85*** 68.88*** 141.46 3.20***

10,. . . ,1 67.86*** 190.26 146.50 55.57*** 93.57*** 5.17*** 55.69*** 447.80 77.72*** 11.22***

15,. . . ,1 61.72*** 226.06 129.17 61.58*** 83.74*** 7.14*** 50.51*** 622.81 69.77*** 15.13***

25,. . . ,1 55.79*** 283.56 110.54 77.15*** 75.21*** 10.79*** 46.64*** 892.14 62.98*** 26.52***

50,. . . ,1 51.05*** 372.84 92.49*** 130.09 67.85*** 20.33*** 44.26*** 1224.69 57.82*** 54.50***

1,2,3 106.63 114.48 218.24 49.10*** 163.65 3.23*** 88.53*** 155.12 130.78 4.82***

1,. . . ,10 72.24*** 224.02 143.57 55.28*** 101.23 6.01*** 55.55*** 453.55 77.90*** 12.46***

1,. . . ,15 65.15*** 272.71 125.89 61.27*** 89.89*** 6.98*** 50.66*** 617.19 69.75*** 13.97***

1,. . . ,25 58.20*** 346.60 108.40 76.25*** 79.01*** 10.73*** 46.48*** 899.90 62.81*** 26.18***

1,. . . ,50 52.31*** 467.27 91.42*** 128.11 69.96*** 21.14*** 44.18*** 1249.44 57.69*** 52.83***

1,2,3,2,1 97.17*** 143.95 165.14 50.68*** 145.67 3.61*** 173.22 51.27*** 268.10 1.87***

3,2,1,2,3 93.09*** 126.12 183.19 50.51*** 137.78 3.31*** 119.40 61.81*** 192.32 2.29***

Average 88.26 174.44 213.77 60.82 130.56 5.97 88.57 355.66 133.12 11.64

1 Values in bold are better than Or(3, 2, 1).
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Table 3: Comparison of several variants of the Or-opt heuristic on planar instances (average statistics over 1000
instances normalized with respect to Or(3, 2, 1))

Or(k1, . . . , ks) Or(k1, . . . , ks)
p=15 Or(k1, . . . , ks)

λ=0.1 Or(k1, . . . , ks)
VF Or(k1, . . . , ks)

λ=0.1,VF

k1, . . . , ks Cost CPU Cost CPU Cost CPU Cost CPU Cost CPU

1 116.48 81.71*** 272.07 43.77*** 166.25 4.89*** 116.04 90.69*** 167.04 4.67***

2 110.08 65.86*** 391.46 43.33*** 140.14 4.68*** 109.98 68.50*** 138.64 4.96***

3 112.85 60.32*** 425.68 43.32*** 134.01 4.80*** 112.40 64.38*** 132.99 4.88***

4 116.37 57.65*** 429.63 43.43*** 133.92 4.46*** 116.20 61.32*** 133.30 4.69***

2,1 104.17 86.14*** 231.64 44.66*** 127.88 6.36*** 104.27 116.21 124.50 7.13***

3,2,1 100.00 100.00 196.12 45.66*** 114.59 6.95*** 100.99 142.48 113.04 8.86***

4,. . . ,1 97.991*** 117.10 172.80 46.48*** 108.57 8.50*** 98.49*** 174.71 107.65 10.50***

5,. . . ,1 97.08*** 134.78 157.45 47.24*** 105.62 9.38*** 97.32*** 203.67 104.84 11.29***

9,7,5,3,1 96.65*** 146.16 166.83 47.16*** 104.91 10.60*** 130.64 62.16*** 143.07 4.76***

10,8,6,4,2 100.88 149.11 176.71 46.89*** 108.95 10.48*** 132.78 61.69*** 144.42 5.04***

10,8,6,4,2,1 96.09*** 162.93 150.97 48.11*** 103.28 11.20*** 132.78 61.67*** 144.50 5.18***

10,. . . ,1 95.36*** 214.14 119.93 51.41*** 101.30 14.28*** 94.73*** 354.94 99.53*** 17.27***

15,. . . ,1 94.95*** 270.93 108.95 56.53*** 100.33 16.94*** 93.87*** 509.32 97.74*** 23.25***

25,. . . ,1 94.73*** 340.55 103.22 68.39*** 99.67* 21.79*** 93.34*** 786.93 96.64*** 36.69***

50,. . . ,1 94.23*** 406.87 100.41 108.77 98.88*** 25.96*** 93.01*** 1306.97 95.96*** 71.85***

1,2,3 107.43 123.29 174.53 45.43*** 128.04 7.49*** 101.62 184.97 114.22 9.57***

1,. . . ,10 103.75 177.16 130.45 50.81*** 115.24 10.88*** 95.72*** 390.62 100.51 16.13***

1,. . . ,15 102.72 205.59 124.82 55.07*** 112.91 11.62*** 94.59*** 518.42 98.57*** 19.95***

1,. . . ,25 101.43 256.72 119.74 65.48*** 110.14 14.07*** 93.70*** 744.85 97.11*** 30.71***

1,. . . ,50 99.82 352.49 115.12 102.16 107.18 20.76*** 93.14*** 1156.73 96.27*** 58.19***

1,2,3,2,1 104.35 147.96 138.79 47.22*** 119.40 9.08*** 116.04 92.90*** 167.07 4.69***

3,2,1,2,3 99.40*** 115.75 151.56 46.95*** 112.45 7.72*** 112.40 65.76*** 133.08 4.76***

Average 102.13 171.51 189.04 54.47 116.08 11.04 106.09 328.18 120.49 16.59

1 Values in bold are better than Or(3, 2, 1).
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to Or(3, 2, 1). We first comment on random instances. The Or(k1, . . . , ks) column of
Table 2 shows that all variants with s ≥ 4 are significantly better than Or(3, 2, 1) in terms
of cost at the expense of an increased CPU time. This is a direct consequence of the
fact that the number of solutions explored during the search increases with s. The best
variants are those larger values of s with strictly decreasing or increasing kt values. The
Or(k1, . . . , ks)

p=15 variant reduces CPU times by a factor of about 3 but about doubles the
solution costs when compared with Or(k1, . . . , ks). As expected, Or(k1, . . . , ks)

λ=0.1 yields
larger solution values than Or(k1, . . . , ks) but smaller CPU times by at least one order of
magnitude. It also appears to dominate Or(k1, . . . , ks)

p=15 in terms of solution quality
and computing time. The Or(k1, . . . , ks)

VF variant seems to improve the Or(k1, . . . , ks)
solution values when the kt values are increasing or decreasing, and consecutive. However,
this improvement comes at the price of roughly doubling the average CPU time. Finally,
the Or(k1, . . . , ks)

λ=0.1,VF combination improves the Or(k1, . . . , ks)
λ=0.1 cost results when

Or(k1, . . . , ks)
λ=0.1 was already better than Or(3, 2, 1). When cost and CPU time are taken

into account, Or(k1, . . . , ks)
λ=0.1,VF offers a good compromise between Or(k1, . . . , ks)

λ=0.1

and Or(k1, . . . , ks)
VF. Several of these observations extend to the planar case but then the

cost reductions are typically less dramatic. The major difference between the random and
planar results lies in the fact that Or(k1, . . . , ks) with s ≥ 4, increasing and consecutive kt

values, behaves rather poorly in the planar case.

Tables 4 and 5 contain results on all heuristics of Tables 2 and 3 that dominate 2-opt and
Or(3, 2, 1), as well as on a number of dominating hybrid variants. These hybrids all execute
2-opt after a variant of Or-opt. We also tested hybrids using the reverse order, including
the 2-opt+Or(1) hybrid of Bentley (1992), but none of these combinations dominated both
2-opt and Or(3, 2, 1). Again, the best hybrids tend to contain long increasing or decreasing
kt sequences. They all use λ = 0.1 and often VF. The heuristics of Tables 4 and 5, and the
efficient frontier are plotted in Figures 2 and 3. In the random case, the non-dominated
algorithms are Or(25, . . . , 1)λ=0.1, Or(1, . . . , 15)λ=0.1,VF, and Or(15, . . . , 1)λ=0.1,VF+2-
opt. In the planar case, the non-dominated algorithms are Or(15, . . . , 1)λ=0.1,VF+2-opt,
Or(25, . . . , 1)λ=0.1,VF+2-opt, Or(50, . . . , 1)λ=0.1,VF+2-opt, and Or(1, . . . , 50)λ=0.1,VF+2-
opt. Only one algorithm, Or(15, . . . , 1)λ=0.1,VF+2-opt, is non-dominated both for the
random and planar cases. It is therefore recommended.

In closing, we note from Table 4 that very large improvements with respect to 2-opt
and Or(3, 2, 1) are obtained on random instances. This clearly indicates that these two
heuristics are highly suboptimal on this class of instances. In particular, one should avoid
applying them alone to combinatorial optimization problems with unstructured costs such
as production scheduling problems with changeover penalties.

8

admin2
Zone de texte
Gilbert Babin, Stéphanie Deneault, and Gilbert Laporte. Improvements to the Or-opt Heuristic for the Symmetric Traveling Salesman Problem. Cahier du GERAD no. G-2005-02. GERAD - Group for Research in Decision Analysis. Montréal, Québec, Canada. January 2005.



Table 4: Comparison of several variants of the Or-opt heuristic on random instances (av-
erage statistics over 1000 instances normalized with respect to 2-opt and Or(3, 2, 1))

vs 2-opt vs Or(3, 2, 1)
Algorithm1 Cost CPU Cost CPU

2-opt 100.00 100.00 76.97*** 27.68***

Or(3, 2, 1) 129.91 361.33 100.00 100.00

(1)2 Or(25, . . . ,1)λ=0.1 97.70*** 38.99*** 75.21*** 10.79***

(2) Or(50, . . . , 1)λ=0.1 88.15*** 73.46*** 67.85*** 20.33***

(3) Or(1, . . . , 50)λ=0.1 90.88*** 76.40*** 69.96*** 21.14***

(4) Or(15, . . . , 1)λ=0.1,VF 90.65*** 54.68*** 69.77*** 15.13***

(5) Or(25, . . . , 1)λ=0.1,VF 81.82*** 95.81 62.98*** 26.52***

(6) Or(1, . . . ,15)λ=0.1,VF 90.61*** 50.47*** 69.75*** 13.97***

(7) Or(1, . . . , 25)λ=0.1,VF 81.60*** 94.58 62.81*** 26.18***

(8) Or(10, . . . , 1)λ=0.1+2-opt 92.13*** 67.24*** 70.91*** 18.61***

(9) Or(15, . . . , 1)λ=0.1+2-opt 88.82*** 68.20*** 68.37*** 18.88***

(10) Or(25, . . . , 1)λ=0.1+2-opt 84.92*** 79.18*** 65.37*** 21.91***

(11) Or(1, . . . , 15)λ=0.1+2-opt 91.13*** 87.14 70.15*** 24.12***

(12) Or(10, . . . , 1)λ=0.1,VF+2-opt 85.94*** 66.88*** 66.15*** 18.51***

(13) Or(15, . . . , 1)λ=0.1,VF+2-opt 81.42*** 72.70*** 62.68*** 20.12***

(14) Or(1, . . . , 10)λ=0.1,VF+2-opt 86.40*** 75.40*** 66.50*** 20.87***

(15) Or(1, . . . , 15)λ=0.1,VF+2-opt 81.43*** 83.70* 62.68*** 23.16***

1 Algorithms in bold are non-dominated.
2 Numbers in parentheses refer to algorithms in Figures 2 and 3.

Table 5: Comparison of several variants of the Or-opt heuristic on planar instances (average
statistics over 1000 instances normalized with respect to 2-opt and Or(3, 2, 1))

vs 2-opt vs Or(3, 2, 1)
Algorithm1 Cost CPU Cost CPU

2-opt 100.00 100.00 96.83*** 111.70
Or(3, 2, 1) 103.27 89.53*** 100.00 100.00

(5)2 Or(25, . . . , 1)λ=0.1,VF 99.81 32.85*** 96.64*** 36.69***

(16) Or(50, . . . , 1)λ=0.1,VF 99.10*** 64.33*** 95.96*** 71.85***

(17) Or(1, . . . , 50)λ=0.1,VF 99.42*** 52.10*** 96.27*** 58.19***

(10) Or(25, . . . , 1)λ=0.1+2-opt 97.76*** 36.99*** 94.66*** 41.32***

(18) Or(50, . . . , 1)λ=0.1+2-opt 97.53*** 45.27*** 94.44*** 50.56***

(12) Or(10, . . . , 1)λ=0.1,VF+2-opt 97.40*** 29.33*** 94.32*** 32.77***

(13) Or(15, . . . ,1)λ=0.1,VF+2-opt 97.03*** 28.64*** 93.96*** 31.99***

(19) Or(25, . . . ,1)λ=0.1,VF+2-opt 96.70*** 45.98*** 93.63*** 51.36***

(20) Or(50, . . . ,1)λ=0.1,VF+2-opt 96.42*** 74.34*** 93.37*** 83.03***

(15) Or(1, . . . , 15)λ=0.1,VF+2-opt 97.15*** 30.82*** 94.07*** 34.43***

(21) Or(1, . . . , 25)λ=0.1,VF+2-opt 96.88*** 37.07*** 93.81*** 41.40***

(22) Or(1, . . . ,50)λ=0.1,VF+2-opt 96.47*** 64.93*** 93.42*** 72.52***

1 Algorithms in bold are non-dominated.
2 Numbers in parentheses refer to algorithms in Figures 2 and 3.
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Figure 2: Costs and CPU times normalized with respect to Or(3, 2, 1) for the heuristics of
Table 4 (random instances)
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Figure 3: Costs and CPU times normalized with respect to Or(3, 2, 1) for the heuristics of
Table 5 (planar instances)
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