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Abstract

In some environments, it is more difficult for distributed systems to cooperate. In fact, some distributed
systems are highly heterogeneous and might not readily cooperate. In order to alleviate these problems, we
have developed an environment that preserves the autonomy of the local systems, while enabling distributed
processing. This is achieved by (1) modeling the different application systems into a central knowledge base (called
a metadatabase), (2) providing each application system with a local knowledge processor, and (3) distributing the
knowledge within these local shells. This paper is concerned with describing the knowledge decomposition process
used for its distribution. The decomposition process is used to minimize the needed cooperation among the local
knowledge processors, and is accomplished by “serializing” the rule execution process. A rule is decomposed into
a ordered set of subrules, each of which is executed in sequence and located in a specific local knowledge processor.
The goals of the decomposition algorithm are to minimize the number of subrules produced, hence reducing the
time spent in communication, and to assure that the sequential execution of the subrules is “equivalent” to the

execution of the original rule.
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I. INTRODUCTION

Enterprises in today’s global market place are hard pressed to deal with diversity, in both products
and technologies. They typically need to customize their products (and therefore processes) to respond
to customer’s rapidly changing needs, and, at the same time, need to integrate multiple systems that are
autonomous, distributed, and heterogeneous. These requirements place a great challenge to the underlying
information technology.

One approach to deal with this situation has been developed at Rensselaer Polytechnic Institute (Troy,
NY, USA), known as the Metadatabase approach, which uses a concurrent architecture containing: (1) a
central knowledge base and (2) distributed rule processors. The central knowledge base, called a meta-
database, contains a description of the different application systems of the enterprise and the knowledge
describing how these different application systems are integrated [2], [4], [5], [6], [7], [8], [9]- This knowl-
edge includes database integrity rules, enforcing consistency across distributed databases, and business
rules, describing how the information is transfered from one application system to the other.

For each of the application systems, we define a rule processor that will be in charge of executing the
knowledge pertaining to a specific system, hence assuring that the application systems stay autonomous
[1]. This approach, called ROPE (Rule-Oriented Programming Environment), therefore creates a dis-
tributed rule processing environment, where the fact bases and the inference engines are distributed.
The collaboration of the rule processors is minimized by utilizing as much information contained in the
metadatabase as possible.

One of the constraints imposed of the rule decomposition and execution is the fact that users may

define routines that can be linked to the rule processor of one of the local systems. This allows for the
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rule processing system to be expanded. However, the different user-defined routines (either procedures or
functions) are usually localized in only one location (i.e., only one of the distributed processor executes
a specific user-defined routine). This implies that the different rule processors must collaborate to a
certain extent in order to execute the rule; i.e., the rule must execute the user-defined routine from the
appropriate location. The approach we propose reduces, if not eliminates, this need for collaboration by
decomposing the rule in such a way that (1) the different rule processors do not need to share the control of
the execution of the rule, or (2) there is no need for a central process controller. Process control, however,
is passed sequentially from one rule processor to the other, using a simple message protocol. Concurrent
processing of rules occurs at a macroscopic level; i.e., although each individual subrule within a rule is
executed in sequence, the set of rule processors may actually be processing multiple subrules pertaining
to different rules concurrently.

From a technical standpoint, the central issue underlying the decomposition is the fact that the condition
and action clauses of a rule may contain events and use routines both of which are distributed across the
different rule processors. Thus, a rule must granularize its events and routines along with their associated
logic in the rule such that each group will be executed in a particular rule processor, and all groups can
be distributed to different processors. Specifically, the process of decomposition takes a rule and produces
an equivalent set of subrules that satisfies the following criteria/conditions: (1) the serial behavior of the
subrules must be equivalent to the original rule, (2) each element of a subrule is uniquely identifiable, (3)
intra-rule data must be separated from inter-rule data to minimize coupling between rules, (4) data items’
usage must be exactly determined, and (5) the set of subrules produced must be minimized.

The decomposition algorithm we have developed uses the fact that a rule can be broken down into five
stages of execution: (1) rule triggering, (2) data retrieval, (3) condition evaluation and actions execution,
(4) result storage, and (5) rule chaining. The idea is to serialize the execution of the rule using these five
stages and to assure that the condition and actions of each subrule produced are localized in the same
rule processor.

Another approach to the execution of distributed rules [10] will only distribute the condition of the rule,
based on the data needed during its evaluation. Although efficient in distributed systems where each and
every distributed processor is identical, it might prove inappropriate when the distributed processors are
heterogeneous and the rules refer to specific routines located in specific processors.

Using the Metadatabase approach, we can also take advantage of the global query facility and its query
language ( [1],[4]) to create a temporary fact base, which in turn is used to process the rule. Once a rule
is triggered, the rule processor currently executing it is in charge of building that temporary fact base.
The fact base serves as a basis for the execution of the rule itself (condition and actions). Once the rule
has finished execution, the content of the temporary fact base is used to update the actual data in the
different persistent fact bases involved in the distributed environment.

The Metadatabase research project is still underway at Rensselaer and Université Laval (Ste-Foy,
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Québec, Canada). Some earlier results include a prototype metadatabase, including a Metadatabase
Management System, a Global Query System, and the Rule-Oriented Programming Environment for het-
erogeneous distributed database integration. The paper will focus on the decomposition of the rule logic
into a set of subrules, this aspect being more useful outside the context of the Metadatabase research. A
prototype of the Decomposition Algorithm presented in this paper is still under development.

In the next section, we introduce some definitions that will serve for the rest of the presentation. These
definitions range from elements composing a rule to theoretical constructs used in the different algorithms.
Section III puts emphasis on the logic underlying the decomposition of knowledge and presents some
theoretical aspects of the localization of the different elements composing the decomposed rule. Section
IV describes in detail, using a simple example, how a rule is broken into an optimal set of subrules.
In Section V, we present a discussion on the approach used. Finally, Section VI contains a conclusion.

Throughout the paper, we illustrate the different sections of the paper using a sample rule.

II. DEFINITIONS

The following definitions accompany the discussion on the decomposition process and will be used when

describing the implementation design for the decomposition of the rule.

A. Rule and Subrule

A rule r is composed of a trigger ¢, a condition ¢ and an ordered list of actions {a;}. A rule is fired
when the trigger event occurs. In the case of a chained (rule-triggered) rule, the rule is fired only if the
actions of a chaining rule have been executed (see below). If the condition c is true, the actions {a;} are
executed in order. If the rule contains only actions, then the condition ¢ is implied and assumed to be
true.

The trigger ¢t represents a unique event activating the rule. In Rensselaer’s metadatabase prototype
environment, this event can be of one of three types: (1) a specific time has been reached, called time
trigger, (2) some fact base content has been modified, called data trigger, or (3) some action has been
performed by the local application, called program trigger. Corresponding to these event types, we define
three types of rules: (1) time-triggered rules, (2) data-triggered rules, and (3) program-triggered rules.
In addition to these three rule types, we define rule-triggered rules — or, simply, chained rules. Chained
rules are rules that are triggered directly by other rules through rule chaining without using triggers. A
rule r chains to rule 7’ if the actions in r can change the condition tested by r'. The rule 7’ is a chained
rule and rule r is a chaining rule. We assert that time-triggered, data-triggered, and program-triggered
rules cannot be chained rules (but may be chaining rules). The trigger is a firing condition of the rule
where the condition is true only when the event occurs. Since a trigger is an event independently defined
outside of any actions, it cannot be changed/reset directly from an action; and therefore, the trigger-using

rules cannot be rule-triggered. Hence, a rule cannot belong to more than one of the above four classes.
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Let us consider the following rule:

every evening at 6PM

if (is_.completed(WO_ID) = FALSE) AND
(due_date(CUST_ORDER._ID) > todays_date())

then
status := “overdue”;
write_customer_notice(CUST_ORDER_ID);

The rule basically states that if an order is not completed and it is past due (the condition of the rule),
its status should be set to “overdue” and a notice should be sent to warn the customer of that fact (the
actions of the rule). The rule is evaluated every evening, at closing time (the trigger).

A subrule s; of a rule r is composed of a condition ¢ and an ordered list of actions {a;}, just like a rule,
but has no trigger. One of the actions in the subrule could be an update directive; this directive tells the

current shell to execute its update query located in the current shell (see Sect. IV for an example). Note

that the list of actions might be empty.

B. Ezxpression and Operation

An expression, denoted e(py, ..., p,) where py, ..., p, represent the parameters of the expression, is
defined as (1) a constant, (2) a variable (persistent or run-time), or (3) a function (including mathematical
operators), producing a single value output based on an ordered list of expressions (parameters). In the
case of a function, the value of each parameter is evaluated (in any order) before the function is evaluated
based on these values. The output produced by an expression is (1) the value of a constant, (2) the
content of a variable, or (3) the single value output from a function.

In our example, we can identify two constants:

o FALSE,

« “overdue”;

there are three variables:

« WO_ID,

o CUST_ORDER_ID, and

o status;

finally, there are six functions:

o is_.completed( WO_ID),

o due_date(CUST-ORDER_ID),

o todays_date(),

o >(due_date(...), todays_date()),

o =(is_completed(...), FALSE), and

o AND=(...),>(...)).

We use >(), =(), and AND() to represent the use of operators ‘>’, ‘=", and ‘AND’, respectively.
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An operation, denoted o(p1, ..., p,) where pi, ..., p, represent the parameters of the operation, is
defined as (1) an expression, (2) a procedure, that performs some tasks based on an ordered list of
expressions (parameters), (3) an assignment statement, modifying the value of one variable, based on an
expression (the value and the expression are the parameters of the assignment statement), (4) a condition
evaluation (i.e., the if() statement), based on one expression (5) an update directive, or (6) a series of
operations (see definition below). For assignment statements, The result from the expression is assigned
to the variable. In the case of a procedure, the value of each parameter is evaluated (in any order) before
the procedure is executed based on these values. A series of operations is defined as a list of operations
01, - .., Op, with at least one o; being a procedure, an assignment statement, or an update directive. By
definition, a rule is an operation that performs a series of operations.

In the example, in addition to the expressions identifier earlier, we can identify one procedure:

o write_customer_notice( CUST_-ORDER_ID);

we identify one assignment statement:

o :=(status, “overdue”);

there is one condition evaluation:

o if(AND(...));

finally, there is one series of operations, the rule itself. We use :=() to represent the an assignment
statement.

The only operations that do include parameters are (1) functions, (2) procedures, (3) assignment state-
ments, (4) an if() statement, and (5) series of operation, in which case the parameters are the operations
in the series itself. In order to perform one of these operations, we must first perform the operations de-
fined by the parameters. The operation must therefore wait for at least one level of operation to execute.
But each of these parameters might in turn have to wait for their parameters to be performed before they
can. This means that the original operation must wait for at least two levels of operations to execute

before it is itself executed. This notion is qualified using the notion of depth. The depth is defined as:

1 if n=20,
D(O(pla"'apn)) = { .
1+ maxj<i<n D(pz) if n > 0.
Two series of operations oy, ..., o, and o}, ..., o}, are equivalent if and only if the output produced by
the series oy, ..., 0, equals the output produced by o}, ..., of,, for every set of data items values, when

the two series are executed on the same set of data items values.

C. Evaluation Tree of a Rule

A tree of evaluation for an operation is a tree where each leaf is a constant or a variable, and each node
is an operation. A node n with subtrees sq, ..., s, whose roots (called respectively sy, ..., sx) are direct

descendents of n, performs the operation of node n using the results from the root operations of subtrees
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51, ..., ) as parameters. The index i on s; indicates that s; is the i*? subtree of n, starting from the left.
The notation will be used to represent a node and its subtrees: n(s1, ..., ). This notation emphasizes
the fact that the node n is an operation using the results from the subtrees sy, ..., sx. When k = 0, the
operation is a leaf operation. In short, we note a node using n or n(). The height of a tree with root ¢(s1,
..+, 8p) corresponds to the number of nodes between the root and the leaf that is the most distant to the

root (including the root and the leaf itself). It is defined as:

H(t(Sl,...’sm)):{ 1 lfmz(),

1+ maxi<i<n H(S,) if m > 0.

The tree of evaluation determines the order of execution of the operations in a rule. Given the domain of
all nodes in the evaluation tree, noted N, we define the matrix of precedence as a function M: N x N

= {—1,0,1} such that:

—1 n must be evaluated before n/,
M(n,n") = { 1 7'/ must be evaluated before n,

0 otherwise.

Each node n is given an evaluation order number E(n) such that

Based on the matrix of precedence, we can generate an oriented graph G(V, A), called the precedence
graph. Each vertex v € V corresponds to a node n € N. Furthermore, there is an arc from vertices v
to v', corresponding respectively to nodes n and n' if and only if M(n, n') = 1. The strict precendence
graph is a subgraph of the precendence graph where additionally, there exists no vertex v”, corresponding
to node n'', such that M(n, n") =1 and M(n", n') = 1.

Lemma 1: Isomorphism Between FEvaluation Trees and Operations. For an operation

O( pl(pll(- . .), e s Plmay ( . )),

Pr(Pn1(--)s - Pam, (- --)))

there exists one and only one isomorphic evaluation tree ¢, with

]
By isomorphic tree, we mean that there is a one-to-one correspondance between each node of ¢ and each

operations used in o, and that, for a node n, corresponding to operation o, the first child of n corresponds
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to the first parameter of o, the second child of n corresponds to the second parameter of o, and so on.
The proof to this lemma is done by induction on D(0), the depth of the operation, by showing that we
can build such a tree (see [1] for a detailed proof).
Corollary 1: The evaluation order number of an operation is defined as the evaluation order number of
its corresponding node in the isomorphic tree. [
By Lemma 1, we know that each node of the tree is isomorphic to some operation. Hence, the operation
can be substituted for the node, and vice versa. Therefore, E(0) is defined as E(n). Figure 1 shows the

evaluation tree corresponding to the sample rule.

| write customer |

[
| and | status | |“0verdue”|| CUST_ORDER_ID |

HE >

| is_completed | |FALSE| | due date | |todays_date|

WO _ID | CUST ORDER ID |

Fig. 1. An Evaluation Tree

D. Optimal Operation Partitioning

As defined in Section II-C, a rule is a series of operations. The parameters of the rule are themselves
operations. Some of these operations can be executed be any rule processor:

e constants

« variables (persistent or run-time)

« system-defined routines (functions and procedures)

e assignment statements

« condition evaluations

Other operations, however, can only be executed in a specific rule processor. These operations are:

« user-defined routines (functions and procedures)

« update directives

The goal of the decomposition process is to serialize the execution steps of a rule in such a way that
each execution step can be executed in the appropriate rule processor. As we will see in Section IV, we
first make sure that all the top-level operations can be executed in a single rule processor. But that is not

sufficient. We will also need to reorganize the operations to minimize inter-rule processor communications.
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To achieve this, we define the concept of operation partitioning. The idea is to group operations in
partitions where (1) every operation within a partition can be executed in the same rule processor and
(2) the order of the partitions reflects the order of execution of the operations. The optimal operation
partitioning will be a partitioning with the smallest number of partitions. In the following, we only mention
user-defined routines and update directive, since they are the only operations that must be executed in a
specific rule processor.

For a rule containing the user-defined routines and update directives f1(), ..., fi(), the optimal operation
partitioning is defined as the ordered sequence of sets Fi, ..., Fy,, containing user-defined routines and
update directives, with the following properties: (1) for every pair of user-defined routines or update
directive f() and f'() in partition F;, f() and f’() are located in the same rule processor, (2) for every
pair of user-defined routines f() and f'() in partition Fj, there exists no routine f”() such that E(f()) <
E(f"() < E(f'() unless f"() is located in the same rule processor as f() and f'(), (3) for each pair f()
and f'() not located in the same rule processor, where f() is in partition F; and f'() in partition Fj;q,
E(f()) < E(f'()). The first two properties qualify the members of a partition; the members of a partition
must be in the same rule processor and they must be executable in sequence. The last property qualifies
the ordering of the different partitions; i.e., two consecutive partitions contain routines from different rule
processors, and the set of routines in a partition must be executed before the routines in the next partition
(in the ordering of partitions).

More formally, we have the partitions Fy, ..., Fy,, where F1 = {r11, ..., rin, }, .o, Fm = {rpm, ...,
Tmn., |- We define S(r), to be a function that returns the name of the rule processor where r must be

executed. The optimal operation partitioning will minimize m, such that:

M(rij,rir) <0 1<i<m, i<l<m,
1< <n;y, 1<k <ng;
M(rij,rie) >0 1<i<m, 1<1<i,

1<j < ny, 1<k <n;

S(rij) = S(rix) 1<i<m, 1<) <ng,
1<k <ny;

S(T’l]) # S(Ti—l,k) 1 S i S m, 1 SJ S i,
1<k <mn;g;

S(rij) #S(rigie) 1<i<m, 1<j<ny,
1<k <ng.
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The first condition states that every operation in a partition must be executed before every operation in
the following partitions. The second condition states that every operation in a partition must be executed
after every operation in the preceding partitions (redundant with the first condition). The third condition
states that operations within the same partition must be in the same system, while the fourth and fifth
conditions ensure the operations in partitions adjacent to the current partition are in different systems

than the operations in the current partition.

E. Global Queries

Traditionally, a global query is defined as any type of queries (retrieval, insertion, deletion, and update
queries) to be performed on multiple distributed databases. In the context of this work, we limit the use
of global query to global retrieval queries. The decomposition process takes advantage of previous results
in the field of global query processing; starting from the set of data items to be retrieved, the Global
Query System [4] generates (1) a set of local queries in the local database DML, used to retrieve data
items from the different databases involved in the global query, and (2) an integration script written in
MQL (Metadatabase Query Language, defined in [4], with extensions in [1]), used to assemble the results

from the local queries.

III. THE BAsic LoGiCc OF DECOMPOSITION

The decomposition algorithm determines where the elements constituting each rule are to be located.
These elements are: (1) the trigger, (2) a global query to create the initial rule’s fact base, (3) a set of
subrules, and (4) a set of update queries. The decomposition algorithm is used (1) to populate a new rule
processor and (2) whenever the global rule base is modified. The rule population only occurs once for each
rule; the rule, however, can be used any number of time. Therefore, the efficiency of the decomposition
algorithm is not an issue.

The following lemmas determine how to decompose the rule and where each element produced should
be localized. They all make use of the classification of rules provided in Section II.

Lemma 2: Trigger Localization. Data triggers and program triggers should be located in particular rule
processors where their data or program resides. Time triggers and chaining triggers can be arbitrarily
placed in any rule processors. ™

The logic of a data trigger is to detect changes occurring in a specific database table. This database table
is located in only one rule processor, hence determining the shell where the data trigger must be located.
Program triggers detect events occurring within a specific application system, which in turn determines
that the trigger must be located in the rule processor corresponding to that application system. Time
triggers refer to a specific time that was reached. This type of event has no relationship with the rule
processors, and can therefore be detected in any shell. Chaining triggers are also independent from any

rule processor; they represent the end of the execution of a specific rule.
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Lemma 3: Global Query Localization. The global query for generating the temporary fact base of the
rule should be located in the same rule processor as the rule trigger. ]

One of the criteria for evaluating the decomposition process is the total number of subrules produced,
for each subrule produced would add one more message to the shells to execute the rule. By placing
the global query at the same location as the rule trigger, we remove the need to transmit the trigger to
another shell, and thereby reduce the total number of messages needed. Furthermore, it also removes the
need to define special message types in the Message Language to communicate the triggers to the other
shells.

Lemma 4: Subrules Localization. If a rule does not use any user-defined routines nor modify any data
items, the decomposition process should produce exactly one subrule (the rule itself) which can be placed
in any rule processor. If the rule uses one or more user-defined routine or modifies one or more data
items, the decomposition process should produce one subrule for each group in the optimal operation
partitioning of the set of all such operations (user-defined routines and data item modification). Each of
these subrules is located in a particular rule processor where the operation should take place. [

First, in Section II, we have explained that user-defined routines must be linked to the local rule
processor in order for the shell to use them. However, the different routines can be located in different
rule processors. Hence, the rule must be decomposed to execute each user-defined routine in the appro-
priate shell at the appropriate time. Second, the rules operate on persistent data items; when a value
is assigned to any of these data items, it is necessary to update its value in the local databases, at the
end of the rule execution. Obviously, the database modification must occur in a specific rule processor.
The decomposition process must determine what changes are needed in which database, in which rule
processor. To obtain the optimal decomposition of the rule, we employ the optimal operation partition-
ing of user-defined routines and database assignments which is defined in Section IV. This partitioning
assures minimum number of subrules. For rules that do not use any of such operations, there will be
no requirement, on their location since the global query initially fetches all necessary data for the rule
execution, hence building the rule’s initial fact base. Some of them, however, may satisfy certain special
conditions and thus must follow certain rules as delineated in the next lemma.

Lemma 5: First Subrule and Trigger Localization. The trigger and the first subrule produced by the
rule decomposition process should reside in the same rule processor whenever it is possible — i.e., when
either one can be placed in any rule processor. [

By storing the first subrule in the same rule processor as the trigger, we do not reduce the total number
of messages produced to execute the rule, but do reduce the total time needed to execute the rule. The
data retrieval is located in the same rule processor as the trigger (Lemma, 3), hence, the message generated
to execute the first subrule will already be in the appropriate rule processor, thereby eliminating the need
for transmitting a message to another shell and reducing the total execution time.

Theorem 1: Rule FElement Localization Theorem. Data-triggered and program-triggered rules. The
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global query is in the same rule processor as the trigger. If the rule uses no user-defined routines or
modifies no data item, the unique subrule produced is also located in the same rule processor as the
trigger. Time-triggered and rule-triggered rules. The global query and the trigger are in the same rule
processor as the rule’s first subrule. If the rule uses no user-defined routines or modifies no data item, all
the elements are located together, in any rule processors. [

This theorem follows directly from Lemmas 2 through 5.

IV. THE DECOMPOSITION ALGORITHM

In this section, we will explain in detail how the subrules are produced. The only assumption we
make about functions and procedures (user-defined routines) is that they do not change the value of their
parameters. If a user-defined routine does change its parameters, it can be rewritten as multiple functions.
For example, in the function f(a,b,c), the value of ¢ is modified, based on the value of a, b, and ¢, we
could write a new function g(a, b, ¢) to assign the new value to ¢ ( :=(¢, g(a, b, c))).

The decomposition algorithm proceeds to implement the above logic as follows:

I.  Generate constructs corresponding to the trigger definitions contained in the rule.

II.  Generate a global query to retrieve the data items used by the rule and the queries to store the rule’s results.
ITa Identify the rule’s global queries.
IIb Determine the data items to retrieve and to update.
IIc Generate the global query.
IId Generate the update queries.

III. Generate a set of subrules corresponding to the rule’s condition and actions.
IIla Rearrange the condition and actions (Sect. IV-A).
IIIb Obtain an optimal operation partitioning (Sect. IV-B).
IIIc Generate the subrules (Sect. IV-C).

IV. Generate rule chaining information.

For each rule, the decomposition process will generate: (1) trigger information (including chaining
information), (2) a global query, used to initially create the rule’s fact base, (3) update queries, used to
store the values updated by the rule, and (4) the subrules produced. In Step I, we extract the trigger
information from the rule and convert it to the appropriate construct used by the rule processor. This
step is straightforward and does not in any way influence the rest of the rule text. At the end of this step,
the trigger is removed and the sample rule would become:

if (is_.completed(WO_ID) = FALSE) AND
due_date(CUST_-ORDER.ID) > todays_date())
then
status := “overdue”;

write_customer_notice(CUST_ORDER_ID);

The next step, namely Step II, deals with persistent data items. First, it recognizes such items and

generate the appropriate global query to retrieve them across the distributed fact bases. Second, it
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determines which of these items are updated by the rule, creating update queries (one per application
system) to modify the relevant fact bases. For each query, it will generate an “update directive” to be
added in the rule. The “update directive” is used to tell the rule processor when and where an update
query should be executed. Once this step is completed, we obtain the following rule (which is equivalent
to the original rule):

if (is_completed(WO_ID) = FALSE) AND
(due_date(CUST_ORDER_ID) > todays_date())
then
status := “overdue”;
write_customer_notice(CUST_ORDER._ID);
update fact base for system Order Processing;

We then proceed in the algorithm by decomposing the rule into a set of equivalent set of subrules (Step
III). Sections IV-A— IV-C will focus on this process. The rule serialization proceeds in 3 substeps: (1)
rearrange the condition and actions to obtain a set of condition and actions processed in a single rule
processor (Step Ila; see Sect.

IV-A), (2) obtain an optimal operation partitioning of the user-defined routines and update directives
(Step IIIb; see Sect. IV-B), and (3) generate the subrules for a rule (Step IIlc; see Sect. IV-C).

Finally, the rules are analyzed to determine the chaining information, i.e., which rule should be consid-
ered for firing when a rule finish executing (Step IV). This way, the different rule processors do not have
to determine the rules to fire whenever a rule finishes, but rather look the content of a table indicating

which rules to fire.

A. Step Illa: Rearrange the condition and actions

The goal of this step is to obtain a sequencing for the operations required by the condition and actions
such that each can be executed in a single rule processor. We achieve this by using the concept of a tree
of evaluation for the rule. The trees of evaluation of the condition (if(exp)) and the actions ay, ..., @
become subtrees of the rule’s tree of evaluation. The resulting tree is rule(if(exp), a1, - .., a;).

If the original tree is:

rule(...,T,...)

where subtree T' (either the condition of the rule or an action) includes a node (an operation) t;(sy, - .-,
sn), then the objective of this sequencing is to ensure that every s; be in the same rule processor as t;. Let
us assume that there exists s;, where s; is in a rule processor different from s, (the user-defined routine
executed by s; is in a different rule processor than s;). We need to reorganize the rule so that s; is
performed before T', to preserve the evaluation order (parameters must be evaluated before the operation
using them). This is achieved by generating a new subtree T”, such that T" is the operation :=(temp,s;),

and by replacing node t; by node t}(s1, ..., sj_1, temp, Sjy1, ..., Sp) in subtree T. We place subtree T"
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just before subtree T' in rule evaluation tree. Specifically, 7" becomes a direct child of the rule (a sibling

of T), but must be placed to the left of T, like this:
rule(...,T",T,...)

Because T" is evaluated before T', the rearranged rule is equivalent to the original rule. At this point the
two subtrees can be executed in different rule processors, yet, the final result is equivalent to the original
rule. We use this process recursively, starting from the root of the whole rule. Let App(o) and Sys(o) be
defined as follows:

App(o) The (name of the) rule processor where operation o is to be executed. This is set to NIL if o can be executed in

any processor.

Sys(o) The set of all rule processors needed to perform operation o.

We define the rule rearrangement algorithm as follows:
IlTa.1 Generate 7(o1, ..., o) the isomorphic tree of the rule.

IITa.2 Determine App(o):
— Traverse () in preorder. For each node o
— if o0 is a user-defined routine
then App(o) < S(o)
— if 0 is an update directive
then App(o) < S(o)
— otherwise App(o) < NIL

IITa.3 Determine Sys(o):
— Traverse () in preorder. For each node o:
— if o is a leaf
then Sys(o) < {App(0)}
where {App(0)} = 0, if App(o) = NIL.
— if o(o1, ..., 0n) is not a leaf,
then Sys(o) < Sys(o1) U U Sys(on) U {App(o)}
where {App(0)} = 0, if App(o) = NIL.

IITa.4 Serialize the rule r(o1, ..., 0n)
— For every 0;, 1 < ¢ < n — 1, in reverse order
— if App(o;) = NIL and Card(Sys(o;)) =1
then App(o;) < the unique element in Sys(o;)
— if App(o;) = NIL and Card(Sys(o;)) > 1 and 3 o;, where App(o;) € Sys(o;) and j is the smallest j > 4
then App(o;) < App(o;)
— Forevery 0;, 1 <1< n

— Serialize(r, 0;).

The procedure Serialize(), which uses Serialize_assign() and Serialize_operation(), can be found in Ap-
pendix A. To illustrate the use of the Rule Rearrangement Algorithm, consider our sample rule. The
user-defined routine is_completed() is located in system Shop Floor Control, while all the other user-

defined routines — namely, due_date(), todays_date(), and write_customer_notice() — are located in the
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Order Processing System. Furthermore, the update directive “update fact base for system Order Process-
ing” is also located in the Order Processing System. Figures 2 and 3 illustrate the rule evaluation tree
before and after the rearrangement. The following lemmas and theorem are used to prove the exactness
of the rearrangement algorithm. Their proofs can be found in [1]. Lemmas 6 and 7 define some properties
of the evaluation number within an operation and a series of operations, respectively. More specifically,
Lemma 6 raises the fact that parameters to procedures and functions can be executed in any order, while
Lemma 7 shows that some operations within a series of operations can be permuted, as long as they

respect the relative evaluation order of these operations.

rule

if | = | | write_customer || update_ops |

[
| and | | status | |“overdue”|| CUST_ORDER_ID |

L = ] L > |

| is_completed | |FALSE| | due_date | |todays_date|

| CUST ORDER ID |

Fig. 2. Tree of Evaluation Before Rearrangement

rule

| = | | if | | = | | write_customer || update_ops |
| tempy | | is_completed | | ar|1d | | status |[“overdue’| | CUST_OIRDER_ID |
Woo] [ =] ]
|temp1| |FALSE| |due_date| |todays_date|

| CUST ORDER ID |

Fig. 3. Tree of Evaluation After Rearrangement

Lemma 6: FEvaluation Order of Sibling Expressions. For an operation

Op(ela te 7en)
where Op is a procedure or a function with the sibling expressions ey, ..., e, as parameters, then
E(e1) =...=E(ep).

Lemma 7: Permutations of Operations. The series of operations
Op(o1,...,0p)
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with
E(o1) <... < E(op)
can be rewritten into the series of operations
Op’(op(l)a vee >0p(n))
with p() defining a permutation of 1, ..., n and
E(Op(l)) <...< E(Op(n))
]

Lemmas 8 through 11 describe how operations can be modified without affecting the final result. For
instance, Lemma 8 states that any procedure, function, or condition evaluation can be evaluated by first
assigning the value of all parameters to temporary variables (in any order) and then using these temporary
variables as parameters to the operation. On the other hand, Lemma 9 shows that any number of these
parameters can be assigned to temporary variables.

Lemma 8: Serialization of an Operation. The operation

Op(e1,...,en)

where Op is not an assignment statement nor a series of operations, and ey, ..., e, are expressions, can

be rewritten into the equivalent series of operations

= (Up(l), ep(l)), cee g i = (’Up(n), ep(n)), Op(vl, .e ,Un)

where p() is defining a permutation of 1, ..., n and vy, ..., v, are variables. ]

Lemma 9: Deserialization of Operations. The series of operation

= (’1)1,61), REE R (UTHen)J Op(vla s 7vn)
where Op is not an assignment statement nor a series of operations, ey, ..., e, are expressions, vy, ...,
v, are variables, and E(:=(v1, 1)) = ... = E(:=(vn, €en)). can be rewritten into the equivalent series of
operation
= (vi,e1)5 -5 = (Vi—1,€i-1)5:= (Vig1,€i41),- - -,
= (Un,€n), OD(V1, ..., 0i—1,€i,Vig1,.-,Vp)

]

Lemma 10 concentrates on the case of assignment statements, stating that the subexpressions, used
to evaluate the expression assigned to a temporary variable, can be evaluated before the expression is
assigned to the variable. In turn, Lemma 11 indicates that only some subexpressions can be assigned to

temporary variables.
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Lemma 10: Serialization of an Assignment Statement. The operation

= (U, e(ely LR en))

where v is a variable and e, eq, ..., e, are expressions, can be rewritten into the equivalent series of

operation
= (Vp1)r €p(1))s - -+ »:= (Wp(n)s €p(n))» = (v, €(V1, . . ., Un))

with p() defining a permutation of 1, ..., n and vy, ..., v, are variables. ]

Lemma 11: Deserialization of Assignment Statements. The series of operation

= (v1,€1),...,:= (Un,€n),:= (v,e(v1,...,05))

where v is a variable, e, ey, ..., e, are expressions, vy, ..., v, are variables, and E(:=(vy, e1)) = ... =

E(:=(vyn, ey))- can be rewritten into the equivalent series of operation

= (vg,€1)y---,:= (Vi_1,€i_1),
= (Vit1, €i41)5 -+ 5= (Un,€n),
= (v,e(V1,---,Vie1,€4,Vit1,y---,Un))
]
Lemmas 12 and 13 validate the procedures defined to perform the serialization process, respectively
Serialize_assign() and Serialize_operation(). Their proof relies on Lemmas 6 through 11. We conclude this
section with the Rule Serialization Theorem, which shows that the function Serialize() produces a series

of subrules equivalent to the original rule.

Lemma 12: Assignments Serialization Process. The procedure Serialize_assign (r, :=(v, e(as, ..., a,)))
generates a series of operations equivalent to . [ |
Lemma 18: Operation Serialization Process. The procedure Serialize_operation (r, o(p1, ..., pn)) gen-
erates a series of operations equivalent to r, if 0 is not an assignment statement. [ |

Theorem 2: Rule Serialization Theorem. The Rule Rearrangement Algorithm produces an operation
(the rule itself) equivalent to the original operation. [ ]
This theorem follows direcly from Lemmas 12 and 13, since Serialize() calls either function Serial-

ize_assign() or function Serialize_operation(), based on the operation passed as a parameter.

B. Step IIIb: Obtain an optimal operation partitioning

After the evaluation tree is rearranged, we are assured that every condition and action used in the
(rearranged) rule can be executed in a single rule processor. In Step ITIb, we generate a partition Fj,
..., Fy, for all the user-defined routines and update directives used by the rule. In the query generation
algorithm (Step II.d), we added directives to process the update queries for specific fact bases. By default,

these directives are placed at the end of the rule’s action list. However, these directives can be moved
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TABLE I

CREATING THE MATRIX OF PRECEDENCE

Name Guideline

1. Descendants If n is a node and s is a direct
descendant of n then
M(n,s) < 1 and

M(s,n) < —1

2. Transitivity If
M(n,n') =1 and
M(n',n"")=1
then

M(n,n") + 1 and
M(n",n) + -1

3. Non-permutable nodes | If operations o and o', with corre-
sponding nodes n and n’, respec-
tively, cannot be permuted, then
M(n,n') «+ 1 and

M(n',n) «+ —1

around within the rule, as long as they are executed after the last assignment to a variable stored in that
rule processor is performed. Hence, if actions a1, as, and ag are the only actions modifying values of
variables from the Shop Floor Control System, and the directive d executes the update query, then E(d)
> E(a1), E(d) > E(as), and E(d) > E(ag). We use this knowledge when creating the optimal partition.

The guidelines presented in Table I determine how to create the matrix of precedence. Guideline 1 is
straightforward: you cannot perform an operation before all its parameter operations have been performed.
Guideline 2 recursively elicit all the dependencies expressed in the rule. The parameters of the parameter
of an operation must be performed before the operation itself. Guideline 3 extracts the semantics of the
rule and generates the appropriate dependencies between operations (condition and actions). Specifically,
Guideline 3 applies in the following situations: (1) the condition of the rule cannot be permuted with
any action or (2) for two actions, a; and as, such that a; is placed before az in the original rule, i.e., the
modeler wants to execute a; before as, and as uses the results from a;. The Rule Partitioning Algorithm
uses the rearraned rule and reorders the top-level operations to obtain an optimal operation partitioning
of user-defined routines and update directives.

We define:

id(o A unique identifier, such that for two sibling operations o and o', id(0) < id(0") if and only if o is on the left of o’
g

in the isomorphic evaluation tree.
App(F) The rule processor where the operations in the partition must be executed.

M(F, F') The matrix of precedence of the partitions defined as
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—1 o€F,d € F',M(o,0") = —1,
M(FaFI):{ 1 o€F,d e€F M(,d)=1,

0 otherwise.

Then, the algorithm is as follows:
IIIb.1 Generate the matrix of precedence for the rule.

I1Ib.1.1 Assign unique identifier ¢d(0) to the operations
— Traverse the isomorphic evaluation tree in preorder

— 1id(0) <« the position of node o in the traversal

I11b.1.2 Apply Guidelines 1-3 to all operations.

— if 0 has parameter o
then M(0,0') « 1, M(d',0) + —1.

— if ¢ is the condition and a is an action then M(c,a) < —1, M(a,c) « 1.

— if a is an assignment statement and v is a variable, with id(a) < 4d(v) and a assigns a new value to v
then M(a,v) + —1, M(v,a) < 1.

— if a(v, e) is an assignment statement and d is an update directive with id(a) < id(d) and o assigns a
new value to v and App(v) = App(d)
then M(a,d) < —1, M(d,a) < 1.

— While there are changes in matrix M
— if M(0,0') = 1and M(d',0") =1

then M(o,0") « 1, M(0",0) + —1.

IIIb.2 Modify the matrix of precedence to obtain the strict precedence graph for o1, ..., o in the rule r(o1, ..., on)
IIIb.2.1 Remove all entries for operations other than o1, ..., on

II1b.2.2 Remove transitive precedence dependencies
— While there are changes in matrix M
— if M(0,0') = —1 and M(0',0"”) = —1 and M(0",0) =1
then M(0"”,0) < 0.
— For all 0, 0o’ in 01, ..., on,
— if M(o0,0') = —1 and M(o’,0) =0
then M(o0,0') < 0

IITb.3 Generate an optimal operation partitioning of o1, ..., on in the rule r(o1, ..., on)
II1b.3.1 Generate the initial partition Fi, ..., Fiy
— F; « {O,}

— App(F;) < App(0;); 1 <i<n
- M(Fi,Fj) — M(Oi,Oj), 1 S 7 S T, 1 S] S n

IITb.3.2 Merge adjacent partitions executed in the same rule processor
— While there are changes in the partition
— if M(F,F’) = —1 and (App(F) = App(F') or App(F') = NIL)
— F«FF
— M(F,F") + 0 and M(F',F) «< 0
— For all partitions F”/, if M(F',F") =1
— M(F',F") «+ 0 and M(F",F") « 0
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— M(F,F") < 1 and M(F",F) « —1

IITb.3.3 Sort the initial partition by execution order
— F1, ..., B < Sort_partition(Fy, ...

I1Ib.3.4 Optimize the partition

— Fy, ..., F , « Optimize_partition(F1, ...

20

Function Sort_partition(), which uses functions Optimize_partition() and Found_all_partitions(), is given

in Appendix A. The following discussion justifies the partitioning process by stating Lemma 14, which

indicates that the Rule Partitioning Algorithm captures all the dependencies between the operations, and

by illustrating its usage with our sample rule.

Lemma 14: Total Dependency Generation. The Rule Partitioning Algorithm captures all the operation’

precedence dependencies in Step IIIb.1.

First, by definition, the parameters to an operation must be evaluated before the operation is processed.

This case is handled by the rule

if 0 has parameter o'
then
M(o,0") «+ 1,
M(d',0) « —1.

Next, the condition must be evaluated before any action is executed. The rule

if ¢ is the condition and
a is an action

then
M(c,a) < —1,
M(a,c) < 1.

deals with that situation. In addition, since only assignment statements can modify variables used by

the rule, by definition, we only need to define dependencies between the assignment statements and the

operations using the result from the assignments.

Furthermore, only two types of operations can be

influenced by the assignments (1) the modified variable itself and (2) the update directive for the fact

base where the variable is located. The rules

if a is an assignment statement and
v is a variable, with
id(a) < id(v) and
a assigns a new value to v
then
M(a,v) «+ —1,
M(v,a) < 1.

if a(v, €) is an assignment statement and
d is an update directive with
id(a) < id(d) and
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a assigns a new value to v and
App(v) = App(d)
then
M(a,d) «+ —1,
M(d,a) < 1.

enter these dependencies in the matrix of precedence. Finally, we generate any transitive dependency
implied by previously defined dependencies using rule

if M(0,0’) =1 and

M(d,0") =1
then
M(o,0") « 1,

M(0",0) + —1.

until no new dependency is created.

“\w“ :

Fig. 4. Precedence Graph Between Operations

In our example, initially, the Rule Partitioning Algorithm generates the matrix of precedence for every
operation in the rearranged rule, making explicit all the dependencies between operations (Step ITIb.1).

This is illustrated in Figure 4, using the precedence graph corresponding to the whole matrix M (). Note
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that the nodes’ number correspond to the preorder traversal of the tree. The rules used to obtain the
matrix are complete and generate all the dependencies needed. We use the transitive dependencies to

elicit all the dependencies.

Fig. 5. Precedence Graph for Top-level Operations

Fig. 6. Strict Precedence Graph

To make sure that all the dependencies are elicited, we must keep all the operations in the evaluation
tree. Once this is done, however, any dependency between the rule condition and actions should also be
explicited. Since we only need to keep track of dependencies among the condition and actions, we can
remove the nodes corresponding to parameters to the condition and actions. For the same reason, we
can remove the root node, which represent the whole rule itself (Step I1Ib.2.1; Figure 5). Furthermore,
we remove the transitive precedence dependencies, which are no longer needed. This results in a matrix
of precedence containing minimal information, as illustrated by the strict precendence graph shown in
Figure 6 (Step IIIb.2.2).

After we have the strict precedence graph, we create an optimal operation partition (Step IIIb.3).
We first create the initial partition by placing the condition and every action in a separate set (Step
I1Ib.3.1). Then, we merge adjacent partitions F' and F' (i.e., M(F,F') =1 and M(F',F) = —1), when
either (1) F and F' is executed in any rule processor (i.e., App(F) = NIL or App(F') = NIL) or (2) F
and F' are executed in the same rule processor (i.e., App(F) = App(F")) (Step II1b.3.2). The resulting
partition for our example is shown in Figure 7. The next step is to linearize the partitions; i.e., we
place them in a linear sequence, preserving the precedence dependencies (Step I1Tb.3.3). This makes the
optimization process easier. Finally, we optimize the sequence of sets (obtained from the linearization)
by alternatively (1) grouping adjacent sets executed in the same rule processor and (2) permuting sets

that have no precedence dependencies (i.e., M(F, F') = 0) as long as either operation modify the current
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partition (Step IIIb.3.4). In Figure 7, this ordering is trivial, since the second partition is dependent on
the execution of the first partition. If such was not the case, however, we could alter the order of the

partitions, without any change in the logic of the rule.

O OmOIOXO,

Fig. 7. Partition Optimization

C. Step IIlc: Generate the subrules

For each set F; in the optimal operation partition, we generate one subrule S;() that will execute the
actions implied by the user-defined routines and update directives stored in F;. The next algorithm takes
the partition generated by the Rule Partitioning Algorithm and generates the subrules (condition and
actions) composing the original rule.

IIIc.1 Generate an ordered list of operation in each partition
— For every partition F' containing operations o1, ..., on

— 01, +.., On < Sort_operations(o1, ..., on)

IIIc.2 Generate a subrule for each partition
— For each partition F;, 1 < ¢ < m, containing operations o1, ..., o,
— generate subrule identifier as App(F;)$rule_id$i
— foreach 0,1 <j<mn
— write the appropriate Message Language statements
The function Sort_operations(), which uses function Found_all_operations() is defined in Appendix A.
Figure 8 shows the different order of evaluation of the original operations in the second partition (Fig. 7).
The algorithm used to determine the actual order of operations is logically equivalent to the algorithm
used to determine the order of the different partitions.
Theorem 3: Rule Partitioning Theorem. The Rule Partitioning Algorithm and the Subrule Generation
Algorithm together generate a series of operation equivalent to the original rule. ]
Since the Rule Partitioning Algorithm generates all the dependencies between operations, by Lemma
14, and that all the permutations performed on the operations preserve their relative order of evaluation,
the ordering of the operations is equivalent to the original rule, by Lemma 7. Therefore, the subrules

generated are equivalent to the original rule.
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V. DISCUSSION
A. Subrule-Rule Equivalence

The only changes we make to the rule when transforming it for decomposition are to rearrange the
tree of evaluation and store intermediary results in temporary variables (Step IIIa of the Decomposition

Algorithm). Let us look at the following rule:

if (z > y) then w := f(z, 9(y, w)); (1)

This rule can be rewritten as:

if (z > y) then temp := g(y,w); w := f(z, temp); (2)

These two rules are equivalent. When evaluating an expression, we generate an evaluation tree to
determine in which order the different operations must be performed. In (1), we first evaluate the value
of x, then the value of y. Next, we compare these two values; if the result from the comparison is true,
we then execute the assignment statement. To do so, we first evaluate the value of each parameter. In
the case of (1), we evaluate z and g(). Therefore, we can see that E(z) < E(f()) < E(:=(w,f)) and
E(9()) < E(f()) < E(:=(w,f)). Since we assume parameters to a function call cannot be modified, g()
can be evaluated before z. Hence, if we evaluate g() before :=(), then E(g()) < E(:=()), which implies
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that E(g()) < E(f()). We can see that the order of evaluation is preserved in (2). Therefore, we can state
that (2) is equivalent to (1).

B. Minimal Set of Subrules

The Decomposition Algorithm minimizes the total number of subrules generated. The total number of
rules depends on two factors: the number of user-defined functions (i.e., routines; ny¢) used in the rule
and the number of application databases updated by the rule (n,). There are in total n, queries in the
set U, the set of update directives in the rule.

Recall that a rule(si, ..., sp) is decomposed into subrules Si(), ..., S;() according to, among other
things, user-defined functions and update directives. The maximal number of subrules produced for each
rule is ny 4+ n, if ny # 0 or n, # 0; otherwise the number is 1, when ny = 0 and n,, = 0. The algorithm
partitions the user-defined routines and update directives used in the rule into a minimal partition Fi,

.., Fp, such that for every f() and g() in the partition F;, then f() and g() are located in application
system “app” and there exists no h() located in an application system different from “app”, such that
E(f() < E(h()) < E(g9()). This is accomplished by the Decomposition Algorithm as discussed in Section
IV. Each F; is therefore the largest set of functions located in the same application, executed in sequence.
By construction, we will generate one subrule for each F4;. Therefore, m < ny. Because it represents
the optimal operation partitioning of the function calls, it is the smallest number of subrules needed to
execute these functions.

We argue that minimizing the total number of subrules will reduce the total time needed to execute the
rule. In order to assess the performance of executing the (original) global rule in the distributed design
with respect to the best and worst case scenarios, we make the following assumptions: (1) it takes s steps
to execute a global rule, (2) each step occurs on a different knowledge processor, (3) it takes on average t
units of time to execute an operation for a step (i.e., execute a subrule, a local query), (4) it takes n units
of time to transmit a message, and (5) messages are processed every d unit of time. In the best case, there
are no delays, hence it takes s - t units of time to perform the operation. In the worst case, we have to
wait d + n units of time between each step. In that case, the execution time is s -t + (s — 1) - (n + d).
The worst case equation provides some insight on how to optimize the performances of the system. We
can see that the only theoretical variable in the formula is the number of steps; the more steps we have
per rule, the longer it will take to execute the rule. This is why the decomposition algorithm minimizes
the number of subrules to reduce the number of times a message is passed to another system. The rest are
technological parameters: the performance can only be improved by (1) reducing the processing time ¢
with a faster rule processor, (2) increasing the speed of the network, hence reducing n, and (3) increasing

the frequency at which messages are processed (1/d).
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VI. CONCLUSION

The Rule Decomposition Algorithm is one element making possible the concurrent execution and man-
agement of knowledge. The decomposition algorithm extracts all the knowledge needed from the meta-
database to process the enterprise’s integrity and business rules. By providing sufficient information to
the rule processors, the distribution of knowledge enables them to process the knowledge in a concurrent,
autonomous fashion.

There are current research efforts in database systems focusing on the inclusion of knowledge at the
conceptual schema. The different results from those efforts make it possible to (1) abstract the knowledge
from the application systems’ code, making maintenance easier, (2) store data constraints knowledge
within the DBMS itself, and (3) automatically enforce these constraints within the DBMS [3], [11], [12],
[13]. All these efforts are concentrating on the processing of knowledge in a single DBMS.

However, with the growing number of distributed information systems, results on the distributed ex-
ecution of rules must also be achieved, as is done in [10]. We can ask ourselves if the solution to the
distributed execution of rules is complete. We basically want to know: (1) how to decompose a rule,
(2) how to distribute the decomposed parts of the rule, and (3) how to execute the rule [10]. First, the
Decomposition Algorithm (Sect. IV) prescribes how the rule should be broken down into subrules. Second,
the Rule Element Localisation Theorem (Sect. IIT) indicates where each components of the decomposed
rule must be stored. Finally, we have explained the rule execution process which is at the basis of the

decomposition process (Sect. I).
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APPENDIX
I. ROUTINES FOR DECOMPOSITION OF KNOWLEDGE

We provide here the definition of the routines used by the different algorithms.

Serialize(root, 0)
begin
if 0 is an assignment statement
Serialize_assign(root, o)
else
Serialize_operation(root, o)

end

Serialize_assign(root,o(v,e(at,...,an)))
begin
fori =1ton
if Card(Sys(a;)) > 1 or (App(a;) # App(o) and App(a;) # NIL)
rewrite 700t(. ..,o(v,e(...,a5,...)),...)
as root(..., 0", 0(v,e(. .., ti,.. 1)), .. 0)
where o’ is operation :=(t;, a;)
if App(a;) = NIL and App(o) € Sys(a;)
App(o') « App(o)
else
App(0') « NIL
end if
App(t;) + NIL
Sys(ti) + 0

Serialize_assign(root,o’)
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if App(a;) = App(o) or App(0) = NIL
rewrite 7oot(..., 0", 0(v,e(...,t;,...)),...)
as 7oot(...,0(v,e( .y iy .n))yen)
App(o) + App(ai)
end if
end if
end for
Sys(o) < {App(o)} where {App(0)} =0 , if App(o) = NIL.

end
Serialize_operation(root, o(p1,...,pn))
begin

fori=1ton

if Card(Sys(p;)) > 1 or (App(p;) # App(0) and App(p;) # NIL)

rewrite 700t(...,0(. .., Piy...)y.. )
as root(...,0',0(... tiy...),..0)
where o’ is operation :=(t;, p;)
if App(p;) = NIL and App(o) € Sys(pi)
App(0') « App(0)
else
App(o') + NIL
end if
App(t;) « NIL
Sys(t;) < 0
Serialize_assign(root, o)
if App(p;) = App(o) or App(0) = NIL
rewrite root(...,0 ,0(...,t;,...),...)
as root(...,o0(...,pi,...),...) App(o) < App(p;)
end if
end if
end for
Sys(o) < {App(o)} where {App(o)} =0 , if App(o) = NIL.

end

Sort_partition(Fi,...,Fm)

returned value: A new partition Fj(1),..., Fy(m), Where p(1), ...

begin
P«
R+
A0
fori =1tom
found <« false
j+«1
while not found and j < m
found < M(F;,F;) = —1
j—j+1

end while
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if not found
P« P J{i}
else
R« R J{:}
end if
end for
c—m
while P # ()
A+~ AP
P+ 0
R «0
forallz e P
fork=1tom
exchange M(F;, Fy) and M(Fe, Fy)
exchange M(Fy, F;) and M(Fy, F.)
end for
exchange F. < F;
c+—c—1
end for

forall j € R

if M(F¢, F;) # 1 and Found_all_partitions(F;, A)

P PG}
else
R « R (i
end if
end for
P+ P
P«
R+ R
R + 0
end while
return Fy,..., Fp,

end

Found_all_partitions(F, A)

returned value: Returns true if all partitions that must be executed after F' are in A. Returns false otherwise.

begin

all_used < true

1+ 1

while 2 < m and all_used = true
if M(F,F;) = —1and F; ¢ A

all_used < false

end if
i1+ 1

end while

return all_used
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end

Optimize_partition(F1,. .., Fpy)
returned value: A new partition Fj,...,F) ,.
begin
change < true
while change = true
change < false
for i = m to 2
if App(F;—1) = App(F;) or App(F;) = NIL)
Fii« Fi1UFi
M(F;_1,F;) < 0 and M(F;,F;_1) «< 0
forj=1tom
if M(F;, Fj) =1
M(F;,Fj) <0
M(F;,F;) «+ 0
M(F;_1,F;) 1
M(F;,F; 1) + —1
end if
end for
m++<m—1
t1—1
change < true
end if
end for
fori=1tom—1
if M(F;, Fi41) =0
forj=1tom
exchange M(F;, Fj) and M(F;41, F})
exchange M(Fj, F;) and M(Fj,F;11)
end for
exchange F; and F;41
change < true
end if
end for
end while
return Fy,...,Fm

end

Sort_operations(oi,...,0n)

returned value: A new series of operations 0,(1),.-.,0,(n), Where p(1), ..

begin
P+
R+ 0
A« 0

fori=1ton
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found < false
j«1
while not found and j <n
found < M(o0;,05) =1
j—Jj+1
end while
if not found and o; is not a condition
P« P J{i}
else
R+ R|J{i}
end if
end for
c+n
while P #£ 0
A+~ AP
P 0
R « 0
for all : € P
fork=1ton
exchange M(o;,0x) and M(oc, o)
exchange M(og,0;) and M(og,o0c)
end for

exchange o. < 0;

c+—c—1
end for
forall j € R

if M(oc,0;) =1 and oc is not a condition

and Found_all_operations(oj, A)
P« P15}
else
R« R’ i}
end if
end for
P+ P
P+
R« R
R 0
end while
foralli € R
fork =1ton
exchange M (0;,0x) and M(oc,0k)
exchange M(og,0;) and M(og,o0c)
end for
exchange oc < 0;
c—c—1

end for
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return 01,...,0m

end

Found_all_operations(o, A)
returned value: Returns true if all partitions that must be executed after o are in A. Returns false otherwise.
begin
all_used < true
1+ 1
while ¢ < n and all_used = true
if M(0,0;) =1and o; ¢ A
all_used < false
end if
ti+1
end while
return all_used

end
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