Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709.
Laval. Ste-Foy, Québec, Canada. August 1997.

C'Vmaker — An Activity Report Generator System

Gilbert Babin, John Plaice and Peter Kropf
{babin,plaice,kropf}Qift.ulaval.ca

Département d’informatique,
Université Laval,
Ste-Foy, Québec, Canada
G1K 7P4

August 1997

Abstract

In most professional organizations, activity reports, summarizing a worker’s different functions, must
be produced in several formats. This recurrent task is tedious and time-consuming because, although
the different documents are produced from the same information, that information is typically stored at
different locations in different formats.

The problem of recurrent activity report production can be simplified through the use of a single
activity base, which registers all of the various relevant activities, and the use of a structure-oriented
language for producing documents from the base. The structure of the activity base must be easy to use
and flexible, allowing for new classes of activities and characteristics, while being independent from any
database. Furthermore, reports should be produceable for any well-specified output format.

Specifically, the solution we propose uses (1) a BiBTgX-like syntax to define the Activity Base and
(2) a new structure-oriented language (CVmaker) for the definition of the document structure. BiBTEX,
a bibliography generation tool used mostly with ¥TEX, allows for the description of bibliographical
references. We have used its basic structure to store activity information.

The CVmaker Document Description Language allows the user to define document templates; namely,
it defines (1) the sections, sub-sections, etc. of the document; (2) the activity classes included in the
different sections; (3) the sorting order of elements within a section; and (4) the output format of the
document.

This paper presents the CVmaker system in detail: the use of BiBTEXto create the Activity Base,
the CVmaker Document Description Language syntax, and the CVmaker Interpreter prototype. The
presentation concludes with the presentation of future work.

1 Introduction

Professional workers in large organizations or academic institutions are often required to produce activity
reports, detailed resumes, and other documents describing their various accomplishments. The information
found in each document is basically the same, but the format can vary extensively from one document to
another. Some of these documents are in paper format, while others are in electronic form, to be input by
various commonly used text processing programs.

The task of rearranging the information in the different formats is time consuming and error prone. Not
only must the various document formats be mastered (sometimes a complex task in itself), but updates
force one to face the problem of simultaneously maintaining many different versions of the same information,
clearly poor practice.

This task is well suited to automation. The ideal solution is to use a single database of the activities for
an individual, henceforth called the Activity Base. The Activity Base should include detailed information
about the activities performed by that individual. For such a base to be useful, it must be fully extensible,
in the sense that adding new kinds of activity in no way invalidates previous documents. Similarly, the

Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709.
Laval. Ste-Foy, Québec, Canada. August 1997.

information in such a base should be sufficiently flexible for the printing of documents in several natural
languages.

Once this Activity Base is created, means must be provided to build documents of various forms from the
base. We assume that a paper document can be generated from an appropriate electronic document, using
appropriate software. Building these documents means one must define (1) their structure; (2) the sort keys
required to order the entries in a document; and (3) the output format.

To effect these tasks, there are two possible approaches. The first would be to use some general language
such as SGML for the definition of both the Activity Base and the printing of documents. This approach is
probably the most general, but SGML authoring tools are not widely available, at least for the moment.

The other approach is to use a widely available and widely used tool, and to extend it as required. This
was the choice we made, using BiBTgX, first developed to produce reference lists for WTEX [1, 2], and now
the de facto standard for electronic bibliographies in computer science, as well as in other disciplines.

The BiBTEX tool has three components: a reference base structure, a postfix notation scripting language
to produce reference lists, and an interpreter for the language. There are many advantages in using BiBTEX.
First, and foremost, the reference base of BiBTEX is widely used by researchers, especially in scientific
research domains, in conjunction with ATEX, to produce research documents. Second, a large number of
predefined BiBTEX scripts, called styles, are available, making the task of producing a reference list even
easier.

In our first efforts to automate the production of activity reports, we extended the reference base to
include research and teaching activities, since we work in an academic environment. The reference base
structure is AScCIl-based and can easily be expanded. This approach looked promising, in the sense that we
could use the same standard format to produce (1) reference lists in research documents and (2) activity
reports.

Then, using the BiBTEX scripting language, we programmed style files generating the final documents.
This task proved difficult: the postfix notation makes it difficult to follow the logic of a script, complex sort
keys must be generated by hand, and we would quickly reach the internal limits of the BiBTEX interpreter.
As a result, we decided to no longer use the BiBTEX scripting language.

The CVmaker approach was developed to alleviate these problems. CVmaker consists of three compo-
nents: the Activity Base, the CVmaker Document Description Language (CDDL), and the CVmaker Inter-
preter. The Activity Base retains the BiBTEX reference base structure. The ¢DDL was developed to produce
structured documents, based on the information found in the Activity Base. The CVmaker Interpreter will
produce a document from (1) a CDDL script and (2) a series of Activity Base files.

This paper presents in detail the CVmaker approach for the repetitive production of activity reports
in different formats. In Section 2, we describe the Activity Base, including a presentation of the BiBTEX
reference base structure and how it can be expanded for use with CVmaker. Section 3 follows with a
description of the syntax of the ¢cDDL. The current CVmaker Interpreter prototype is presented in Section 4.
Concluding remarks (Section 5) include extensions to the CVmaker approach.

2 The Activity Base Structure

The Activity Base consists of entries written in the style of BiBTEX files. A BiBTEX file (usually with a
.bib extension) is composed of a series of BiBTEX entries, whose structure is described in detail in [1, 2].
Basically, each entry contains a reference class identifier, a unique reference key, and a series of field entries.
In Figure 1, the reference class is book, whereas the reference key is Goossens94. Field values are placed
between braces or double quotes.

The Activity Base syntax was designed with extensibility in mind. Using the BiBTEX syntax, new classes
and fields can be arbitrarily defined to describe activities. The meaning of the classes and fields is established
by the users of CVmaker. However, two macros are predefined: t, meaning “true”, and f, meaning “false”.
They are used in the internal processing of C'Vmaker to represent the possible values of Boolean expressions.

For the purpose of this research (and for our personal use), we have defined new classes corresponding
to academic and research activities, and new fields, qualifying the activities in old and new classes. For
example, Figure 2 presents the relationship between a postdoctoral fellow and her advisors.

Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709.
Laval. Ste-Foy, Québec, Canada. August 1997.

@book { Goossens94,
author = {Goossens, Michel and Mittelbach, Frank and Samarin, Alexander},

title = {The \LaTeX\ Companion},
publisher = {Addison-Wesley},
address = {Reading, MA, USA},
year = 1994

}

Figure 1: A BiBTEX entry example

Qadvisor { PostDoc:Dupuis:95,
author = {Dupuis, Renée}l,
editor = {Toupin, A. and Maltais, R.},
institution = {Université Lavall,

address = {Québec, Canada},
type = postdoc,
year = 1995

}

Figure 2: An Activity Base entry example

3 The CVmaker Document Description Language

The CVmaker Document Description Language defines (1) the structure of documents to be produced, i.e.,
the sections composing each document, headers, trailers, etc.; (2) the relationship between entries found in
the Activity Base and sections of a document; (3) the sort key for each individual section; and (4) the output
format for each activity class appearing in a section.

To illustrate the use of CDDL, we provide small examples of its usage in the subsections below. Note
that identifiers are classified as follows: (1) activity classes begin with an ‘@Q’, (2) fields begin with a ‘.’
(3) variables and routines begin with a ‘\’, (4) reserved ¢DDL words begin with a ‘§’, and (5) macros begin

with a letter.

3.1 Document structure definition

The main purpose of CDDL is to define templates describing the overall structure of documents. (Templates
are stored as files with . tpl extension). Figure 3 illustrates the main parts of a document template: (1) global
parameters and declarations (sections $parameters and $declarations), which specify language settings,
generic output functions, etc.; (2) the document’s header and trailer (sections $header and $trailer); and
(3) a list of sections.

The list of sections includes an operator indicating how to generate section numbering: $alpha, $roman,
$arabic, and $none. The $none operator is used when the user wishes to put section numbers directly into
section titles. The list is composed of a series of section declarations, each one beginning with the $section
operator. A section, in turn, can contain a series of entries ($items operator) and/or a list of subsections,
recursively. In Figure 3, we have two top-level sections, numbered by letters. Furthermore, Section A has
n subsections, each of which is numbered by Arabic numerals.

3.2 Activity—structure relationships

The mapping of activities into sections is done within the $items clause. This clause describes how the
activities composing a specific section are to be selected, processed, and formatted. The selection done as
in Figure 4: for each activity class to be selected, we write a $case statement, identifying the activity class
and providing a selection predicate. In the example, the section “Refereed Publications” contains all refereed
journal and conference papers published in the year \current, as specified by the two $case statements
and their associated predicates (.hasreferee equals t and .year equals \current). Note that variable
\current is a global variable, declared by the user, containing the current year.

Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709.
Laval. Ste-Foy, Québec, Canada. August 1997.

$parameters { ... }
$declarations { ... 1}
$header { ... }
$alpha {
$section "Title Section A" {
$items ...
$arabic {
$section "Subsection A.1" { ... }
$section "Subsection A.2" { ... }
$section "Subsection A.n" { ... }
}
}
$section "Title Section B" { ... }
}
$trailer { ... }

Figure 3: Global structure of a document

$section "Refereed Publications" {

$declarations { ... }
$items
$header { ... }
$case @article : .hasreferee ~ (.year = \current)
$format { ... }
$case @inproceedings : .hasreferee ~ (.year = \current)
$format { ... }
$trailer { ...
$sort { ... }
}

Figure 4: Linking activities to a section

3.3 Sort key definition

For each section defined in the document template, we can provide an explicit sort key. Note that in the
absence of a $sort clause, the sort key is the section order number and the activity entry order number.
In fact, all the keys created start with the section order number, to ensure that each entry is processed in
sequence, and end with the activity entry order number, to resolve any conflict in sort keys.

We define a sort key by declaring the fields composing it, the order in which to consider those fields,
and the relative order of values within that field. Figure 5 shows the use of the $sort clause in a section
producing a list of books. As mentioned earlier, the section order number is the first element in the key. The
next element is the author’s name; here, we specify that the sort key is the concatenation of all the authors
of a book; for each author, we will consider the subfields in the sequence [.von, .last, .jr, .first]|. The
next element is the last name of the editors of the book. The publication year follows, in reverse order, as
specified by the “(>)” operator. We then use the book title. Finally, we will place books before book parts.

3.4 Output format description

The production of the actual output is done for each section and for each $case clause. At the section level,
we can declare local variables, which respect the scoping of nested sections. In Figure 6, we declare the
integer variable \count, which is used to count the number of postdoctoral fellows being supervised. The
section’s $header clause defines the header output (if any) for the section. In our example, we initialize
variable \count to 0. The section’s $trailer clause defines the trailer output (if any) for the section. Here,
we print the total number of postdoctoral fellows.

For each entry matched in the $case clauses, we define the output format in the $format clause. Op-
erations include procedure calls ($do statement), conditional statements ($if statement), for-loops ($for

Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709.
Laval. Ste-Foy, Québec, Canada. August 1997.

$section "Books" {

$declarations { ... }
$items
$header { ... }
$case @book: (.type = technical) ~ (.year = \current)
$format { ... }
$case @incollection: (.year = \current)
$format { ... }
$trailer { ... }
$sort {

.author[.von, . last,.jr,.first];
.editor.last;

.year (>);

.title;

$classlist (@book, @incollection);

}

Figure 5: Defining sort keys

$section "Postdoctoral Fellows'" {
$declarations { $integer \count; }
$items
$header { \count := 0; $newline;}
$case Qadvisor: .type = postdoc
$format {
$do \print_authors() ;
$if .editor <> $empty {
", supervisor(s): ;
$do \print_editors() ;
}
$newline ; \count := \count + 1;
}

$trailer { $newline; " Number of fellows: " ; \count; $newline ; }
$sort { ... }
}

Figure 6: Formatting the output

statement, not illustrated in Figure 6), variable assignments (using the “:=” operator), and print statements.

Printing is accomplished in two ways: explicitly, by using the $print statement followed by an expression,
or implicitly, by writing a string, macro, variable, or field name alone in a statement. Newlines are produced
explicitly using the $newline statement.

4 The CVmaker Interpreter Prototype

A report is produced by the CVmaker Interpreter, which uses a document template (.tpl file) and a
series of Activity Base files (.bib files) as input. Processing consists of seven steps: (1) initializing the
environment (standard macros and fields definitions); (2) loading the document template (which may override
standard definitions); (3) loading the Activity Base; (4) mapping the activities into the document’s sections;
(5) building the sort keys; (6) performing a heap sort of all the entries; and (7) executing the document
template to produce the final document. Figure 7 illustrates the result from the partial document template
shown in Figure 6.

The syntax of the document template and that of Activity Base entries are checked while the files are
being loaded.

In order to map the activities to the sections, we keep a table of the $case clauses involving the different

Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709.
Laval. Ste-Foy, Québec, Canada. August 1997.

Postdoctoral Fellows

Dupont, M., supervisor(s): Maltais, R.
Dupuis, R., supervisor(s): Toupin, A. and Maltais, R.

Number of fellows: 2

Figure 7: Final result

activity classes. This reduces the search time. For each activity, we identify the first clause (they are kept
in the relative order of the sections) for which the selection predicate is true and assign the activity to the
corresponding section. At the same time, we calculate the largest field sizes, in order to build the sort keys.
In a second pass, we generate the sort key for each entry. We need two passes, since we need to know the
largest possible size for the different fields composing the sort keys. The sort key is the concatenation of the
value of all the fields composing the sort key, as explained in Section 3.3; each value is padded with NUL’s.
Sorting in reverse order is achieved by creating the complement string.

Once the key is built, a heap sort procedure will order the activities. Note that activities not assigned to
a section will have an empty sort key, and will therefore be at the start of the sorted list. The processing of
the document template will skip these entries. The document is produced sequentially, processing the sorted
activities as their corresponding section is reached.

5 Discussion

In the previous sections, we introduced C'Vmaker as a solution to the problem of multiple activity report
production. CVmaker is regularly used for this purpose by the three authors, and is also being used
experimentally by some of our colleagues. From the same activity base, reports have been produced in
unformatted Ascil, as well as in ATEX, #TML and Microsoft Word™’s Rr¥.

The various C'Vmaker tools are implemented using a home-grown LL(1) compiler generator called Comp-
Tools (2400 lines of source), along with an additional 3000 lines of C. The tools run on several Unix™ envi-
ronments, and would require minimal modification to run in other environments. As for the Activity Base,
in addition to the 13 predefined BibTEX classes, we use another 20 classes for our purposes. On average,
defining the output for a given class—document combination requires about 20 lines of CDDL.

The results we have obtained to date are sufficient for basic use. Nevertheless, before these tools can be
released, certain improvements will have to be made. These improvements, currently being implemented,
can be classified in two categories: (1) additions that ensure that the languages and tools being used more
resemble standard programming languages and environments (variables, structuring of programs, graphical
interfaces, etc.); and (2) additional functionality that is specific to the problem at hand (complex sort keys,
multiple languages, etc.) In the following discussion, we will focus on the latter.

As the world economic system becomes more integrated, it is important that programs manipulating
electronic documents not simply be designed for English. Within our own institution, we must generate,
from the same base, documents in English and in French, using the appropriate conventions for each language
(e.g., using « » rather than “ ” in French). When we interact with other institutions in other countries, we
must take into account their conventions as well.

Multiple languages arise in two different contexts. First, the activity base itself may have raw information
that is input in several languages. For example, titles of talks given or of articles written may be in several
different languages, and this information must be retained, to ensure proper printing of the text. Second, a
document normally has a major language or, in the case of a multilingual document, several major languages.

To address the first situation, we are experimenting with various forms of tags to specify that a given
string is in, say, English, French or Arabic. By doing so, the appropriate fonts, typesetting routines, etc. can
be loaded automatically by the output routines when generating documents.

As for the second situation, it creates two kinds of problems. The first and easiest requires printing
headers in the appropriate language(s). The second is more complex: it consists of manipulating multiple
sort keys, according to the major language of a document. This problem becomes even more complex in a

Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709.
Laval. Ste-Foy, Québec, Canada. August 1997.

multilingual document, where one might want to have different parts of a document ordered using different
languages.

Rather than develop specialized routines for each language, we are developing a general means for sorting,
in which complex character ordering, usable for any language, will be specifiable.

We conclude by reiterating that this approach to multiple format document preparation has allowed us
to generate a series of portable tools that are fully compatible with BibTgX, the widely available standard
for electronic bibliographies. We suspect that the utility of these tools goes well beyond their current use.

References

[1] Michel Goosens, Frank Mittelbach, and Alexander Samarin. The BTgX Companion. Addison-Wesley,
Reading, MA, USA, 1994.

[2] Leslie Lamport. ETgX: A Document Preparation System — User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition, 1995.

	reference: Gilbert Babin, John Plaice, and Peter Kropf. CVmaker --- An Activity Report Generator System. Research report no. DIUL-RR-9709. Université Laval. Ste-Foy, Québec, Canada. August 1997.

