
AN OBJECT ORIENTED SHELL FOR DISTRIBUTED PROCESSING

GILBERT BABIN1, WAIMAN CHEUNG2, LESTER YEE3, SOFIENNE BAHRI1

1 Département d'informatique,
Université Laval
Ste-Foy, Québec, Canada, G1K 7P4
+1 (418) 656-3395 babin@ift.ulaval.ca

2 Department of Decision Sciences and Managerial Economics,
Chinese University of Hong Kong
Shatin, New Territories, Hong Kong
+852 2609 7816 wcheung@cuhk.edu.hk

3 Babson College
231 Forest St.

Babson Park MA USA 02457
+1 (781) 235-1200 yee@babson.edu

Abstract
The advancement in computer network domain and the globalization of economy have forced

enterprises to adopt a distributed structure which, in turn, implies a distribution of resources

of those enterprises, particularly their information systems. Therefore, it is important to

provide enterprises with integration tools to consolidate the information available throughout

the distributed information systems and databases. One original approach to the integration

problem that assures flexibility and scalability is the use of the metadata concept. This

concept has led to the development of a Metadatabase system, that is, a knowledge base

containing both logical and physical data characteristics of local systems. The Metadatabase

may be seen as a specialized information warehouse which stores information about

information systems, the data structures they use, and the mechanisms used to actually

process and store the information. Based on the Metadatabase, a software infrastructure, the

Rule-Oriented Programming Environment (ROPE), was developed to achieve the integration

of distributed information systems. This paper presents a ROPE shell which makes better use

of object oriented technologies.

Keywords: Interoperatility, Distributed Systems, Reactive Agents

1. INTRODUCTION

The advancement in computer network domain and the globalization of economy have forced
enterprises to adopt a distributed structure which, in turn, implies a distribution of resources
of those enterprises, particularly their information systems. Therefore, it is important to
provide enterprises with integration tools to consolidate the information available throughout
the distributed information systems and databases. The integration concept should support an
interoperable process which means the ability for two or more distributed information systems
to mutually exchange information and share functionalities independent of their constraints of
distribution and heterogeneity, as well as work together to execute well-defined and delimited

tasks jointly. Notice that the traditionally proposed integration approaches assume the
interoperability at the application level (i.e., between local systems) via an integrated schema
or a common manipulation language [7,15]. On one hand, designing an integrated schema
implies resolving conflicts and imposing standards to local systems, which is generally
difficult to achieve and maintain. On the other hand, finding a common language is not easy
because each system has its own standards and needs. One original approach to the integration
problem that assures flexibility and scalability is the use of the metadata concept. This
concept has led to the development of a Metadatabase system, that is, a knowledge base
containing both logical and physical data characteristics of local systems. The Metadatabase
work [2,4,5,8,9,10] has focused on creating an integration environment and defining its
principal components to produce a Metadatabase-supported, Rule-Oriented concurrent

systems solution for the enterprise information integration and management problem. The
Metadatabase may be seen as a specialized information warehouse which stores information
about information systems, the data structures they use, and the mechanisms used to actually
process and store the information.
A software infrastructure, the Rule-Oriented Programming Environment (ROPE), was
developed to achieve the integration of distributed information systems, using a Metadatabase
as a driving force. ROPE uses (identical) shells to (1) interface with the local systems and (2)
establish communication channels across the local systems. The Metadatabase and the shells
provide a powerful environment for interoperability, provided that the Metadatabase contains
enough knowledge about the systems to be integrated.
Different versions of the shell have been designed, each version taking advantage of different

available tools :
• The ROPE shell-α is a generic and portable shell, and provides the basic functionality of

ROPE [1].
• The ROPE shell-β takes advantage of the distributed query management tools embedded

in SQL3 [14].
• The ROPE shell-γ was designed to handle real-time systems [13].

This paper presents a fourth instance of the ROPE shell, the shell-ω. This shell makes better

use of object oriented technologies [3], in particular CORBA (Common Object Request
Broker Architecture) [11,12], which supports direct interoperability among various object-
oriented systems and some gateway services for connecting relational or other traditional
systems into an object environment.
The paper is organized as the following. Section 2 describes in more details the Metadatabase
approach and the internal functions of ROPE shells. The rationale justifying the use of an
object-oriented approach is also presented. In Section 3, we present a generic object model of
the ROPE shell. Section 4 describes the design of the ROPE shell-ω, which uses CORBA as a

communication middleware. We conclude the paper in Section 5.

2. THE METADATABASE APPROACH

Rensselaer's Metadatabase approach was developed to integrate information systems, more
specifically manufacturing systems. Manufacturing systems are heterogeneous and

distributed by nature. To produce finished goods, many systems must cooperate. These
systems might include an Order Processing System, used to record customers' orders, a
Process Planning System, determining the steps to follow to obtain finished goods, and a
Shop Floor Control System, dealing with process planning, job assignment, production status,
etc. These systems are highly specialized, in the sense that only certain systems can perform
specific tasks; for instance, only certain machines can drill a hole into a sheet of metal, for
instance. These systems are also autonomous; each one manages its own database, which
makes data consistency an issue. The problem then is how to coordinate the tasks performed
by each of these systems and integrate the information stored in their local databases.

Metadatabase

Process
Plan

Order
Processing

Shop Floor
Control

Local Data

Local Data
Metadata

Local Data
Metadata

Local Data
Metadata

Local Data Local Data

Figure 1 : The Metadatabase Concurrent
Architecture

Figure 2 : Distributed Metadatabase
Architecture

2.1 The Concurrent Architecture

The Metadatabase approach uses a concurrent architecture (Fig. 1) which contains: (1) a
central knowledge base and (2) distributed rule processors. The central knowledge base,
called a Metadatabase, contains a description of the different (manufacturing) systems and the
knowledge describing how they are integrated and semantically interrelated. This knowledge
includes (1) database integrity rules, enforcing consistency across the distributed databases,
and (2) business rules, automating information flows across these systems.

For each of the (manufacturing) systems, we define a rule processor. The rule processor's role
is twofold. First, it encapsulates the system, ensuring that the system remains autonomous
and independent, while making the system's capabilities available to other systems. Hence,
although the shells are identical in structure, they differ in their capabilities, since each one
has access to the special capabilities of the system it encapsulates. Second, it enables
integration by providing knowledge processing capabilities to the system it encapsulates.
The Metadatabase and the rule processors form an integrated cell. The Metadatabase
manages the knowledge, providing a global coherent view of the whole system, and
distributes it to the local rule processors, hence achieving operational integration. In a Wide-
Area Network (WAN), we can rely on a number of such integrated cells to provide a more
robust framework (Fig. 2).

We should point out that the central shell (Fig. 1) used by the Metadatabase has the same
structure as the other shells. However, it provides specialized services. In particular, it
manages metadata about the other systems participating in its local integration cell. Therefore,
these shells are not very different from WOS nodes, since the Metadatabase may be viewed as
a specialized resource.

2.2 The Rule-Oriented Programming Environment

The ROPE (Rule-Oriented Programming Environment) was developed as one implementation
of the Metadatabase concurrent architecture. It creates a distributed rule processing
environment, where fact bases and inference engines are distributed. The collaboration of rule
processors is minimized by utilizing most of the information contained in the Metadatabase.
The ROPE approach defines the shell technology needed for the concurrent architecture
evolution. Specifically, it defines: (1) how rules are stored in the local shells, (2) how rules are
processed, distributed, and managed, (3) how the shell interacts with its corresponding
system, (4) how the different shells interact with each other, and finally (5) how the shells are

structured. The main advantage of the ROPE approach is that shells are invisible to the users.
They are able to control the external behaviors of the local systems, without user intervention.
The ROPE shells have the following functions (See [1] for more details):

• Global Query Processing: a global query is a data retrieval query that needs the
participation of one or many local systems from the integration environment.

• Global Update Processing: a global update processing represents a set of transactions
(insertion, deletion or modification) that act on the data of the local systems. As a result,
every local behavior change that has an impact (as updating data that pertain to another

local system) on the behavior of the integration environment, has to be immediately
transmitted to the rest of the appropriate systems.

• Adaptability and Flexibility: the adaptability of the concurrent architecture refers to the
ability of shells to change their behavior. This change is based on the knowledge stored in
the Metadatabase.

Figure 3 shows the components of a shell.

The Rule Segment. A key element of the shell is the possession of rules. Logically, the Rule
Segment implements the intersection of the global rulebase model and the local application
logic. All the rules are originated from and globally managed by the Metadatabase. Whenever
an operating rule is changed, the change is propagated to all local systems that will be affected

by it. Also, when changes occur in the global data model of the enterprise, new data
management rules are generated to replace the existing rules in the Rule Segment of the
different shells. The Rule Segment is separate from the source code, which allows for easy
implementation on different platforms.
Network Monitor. The Network Monitor is in charge of the interface between the shell and
the network. It receives incoming messages and passes them to the Message/Rule Processor
(see below).
Application Monitor. The Application Monitor “spies” on the behavior of the application
and reports any globally significant event to the Message/Rule Processor, such as changes to
the local database, or a call to a specific procedure, that would result in the execution of a
global behavior rule. The Application Monitor functionality can be specified in general terms,

allowing implementations on very different platforms. Furthermore, the use of the Global
Query System (GQS) facilities [5] actually removes the need to tailor the Application Monitor
to the local database. Current implementations of the Application Monitor focus only on the
detection of local database activities.
Timer. The Timer manages a list of time events. When a time event is due for processing, the
Timer activates the command associated to that time event.
Database Interface. This object converts the data item values to a neutral format used by the
shells. This is to remove the burden of processing conversion rules every time we need to use
a data value.
Message/Rule Processor. This object is the inference engine of the shell. It is generic and
neutral to particular implementations. On the basis of the events it receives from the Network

Monitor, the Application Monitor, the Timer, and the local application, it will trigger the

appropriate rule(s) stored in the Rule Segment, or execute the appropriate functions of the
shell. In addition to rule execution, the Message/Rule Processor performs four other
functions: (1) it serves as a dispatcher, transmitting local query requests to the Database
Interface; (2) it transmits any structural change notification it receives from MDBMS to the
Application Monitor; (3) it updates the Rule Segment and notifies the Application Monitor

and Timer, when a rule deletion or insertion notification is received; and (4) it updates the
frequency at which events are processed. From an implementation standpoint, the
Message/Rule Processor consist of two distinct modules : the Message Processor and the Rule
Processor. The Message Processor generates the Rule Processor, which requires to be linked
to local functions.
Result Integrator. The Result Integrator is used to assemble the results of local queries
requested by the local system. In addition, it performs operations on these queries, like
producing a sum of the values on the different rows. The functions this object performs are
based on MQL and GQS. The processing of the Result Integrator is straightforward. It
receives a set of messages as input, one of which contains a script describing (1) the local
queries, (2) the integration operations to be performed, and (3) the output file to be used. The

Result Integrator simply executes that script.

2.3 The Need for an Object-Oriented Approach

The growing popularity of object orientation has brought us to investigate how object oriented
approaches and technologies could benefit ROPE. By design, the ROPE shell is highly
modular. Furthermore, the ROPE shell-α, although developed in C, was designed with the
notion of encapsulation. Specifically, for every data structure defined in the shell
environment, a single file contains the structure definition and all the routines used to
manipulate that structure; as described above, the shell is the agregation of independant
modules, each providing specialized services. However, we feel that designing using object
orientation is not quite sufficient. The use of C makes maintenance of the shells a problem.
There exists many versions of C and any change made must guaranty that the shell is still
portable. In addition, the development of CORBA as an interoperability infrastructure for
objects also made us think of the benefits of using an object oriented approach for the shell,
therefore simplifying the communication problem between shells.

Rule
Segment

Message/
Rule

Processor

Network
Monitor

Application
Monitor

Local DBMS
and

Application
Local
DB

NETWORK

Timer

Result
Integrator

Database
Interface

Local
Configuration

Network
Link

1+ 1+ 1+

1+

1+1+

2

1+

Routine Subrule

Rule

Network
Configuration

Subrule
Set

Routine
Set

Network
Link Set

Rule Set

Network
Trigger

Set

Message
Set

Result
Integrator

Database
Interface

Item
Conversion

Rule

Compiler

Trigger

Conversion
Rule
Set

uses

u
se

s

Message

ch
ain

ed

m
em

b
er

Table
Information

1+

1+

Event Set

Event

Shell

Table

triggers

Figure 3 : The Generic Structure of a
ROPE Shell

Figure 4 : A Generic Object Model of
ROPE Shells

3. A GENERIC OBJECT MODEL OF ROPE SHELLS

A class diagram of the shell, using the FUSION methodology notation [6], is shown in

Figure 4. We will now describe the major classes composing this model. The different classes
correspond to the information required by the shell to perform its tasks :

The Rule Segment. The Rule Segment is described by classes Event Set, Table Information,
Rule Set, Conversion Rule Set, Subrule Set, Routine Set, Compiler. The shell stores the Rule
Segment in files. For each of these classes, methods are defined (1) to load the Rule Segment
from files, (2) to update the Rule Segment, or (3) to search for a particular information within
the Rule Segment.
Network Monitor. The communication links are established using class Network
Configuration, which is the agregation of classes Message Set (the messages received ot to be
sent by the shell), Network Link Set (communication links with other shells), and Network

Trigger Set (used when many messages are required before an action is taken). Specifically, a
call to method process_new_messages() will trigger the processing of messages received or
to be sent.
Application Monitor. This module is implemented using class Table Information. Before a
request to monitor a table can be made, the object describing that table must be found.
Timer. The Timer is an active module. It triggers the appropriate shell modules based on a
list of events, which are stored in class Event Set.

Database Interface. The functions of the Database Interface are performed by class Database
Interface. Every database query run against the local database is filtered to convert the values
to/from the global format, as described in instances of class Item Conversion Rule.
Message Processor. This module includes all the functionalities to process messages, as
described in class Message. Depending on the type of the message, it will launch the

appropriate module.
Rule Processor. The Rule Processor uses classes Subrule Set, Routine Set, and related
classes. This module must be regenerated every time the Rulebase Segment is modified to
properly bind the locally defined routines to the shell.
Result Integrator. Class Result Integrator fully specifies the functionalities of this module.

4. THE ROPE SHELL-ω

4.1 The Common Object Request Broker Architecture (CORBA)

The shell-ω takes advantage of object interoperability services provided by CORBA. CORBA

was developed to achieve the interoperability of object oriented distributed systems. We give
here a short description of CORBA's main features :
Handling heterogeneity. Objects developed in different languages usually have a hard time

communicating with one another. CORBA solves this heterogeneity problem by providing a
uniform way to describe interfaces to available services, the Interface Description Language
(IDL).
A Common Object Model. The CORBA infrastructure proposes an object model used for
the interactions across the different platforms.
Dealing with Legacy Systems. The use of IDL simplifies the development of interfaces to
access legacy application systems.
CORBA defines the communication architecture between the client and server applications.
The main component of this architecture is the Object Request Broker (ORB). The client
requests the use of a service to the ORB, using CORBA API (Fig. 5). The ORB is responsible
for locating the service on the network (which was previously registered to the ORB). The

service is then accessed via the Object Adaptor.

4.2 Using CORBA for ROPE

CORBA may be used to support the interactions between the ROPE shells. The question

really is how to use CORBA services efficiently, while preserving the shells structure as much

as possible. In the original shell, the Nerwork Monitor handles all network related tasks,
namely, sending and receiving messages. These messages always correspond to some service
request made to the shell. Thes requests are always dispatched to the appropriate module by
the Message Processor, with an exception that global queries are sent directly by the Network
Monitor to the Result Integrator. From this, it can be argued that the Network Monitor can act

as the CORBA server and provide the entry point to all requests sent to a shell. It can also be
argued that all service requests are made by the Message Processor, which controls all the
processing of messages, therefore the logical interactions with other nodes. The Message
Processor will therefore act as a CORBA client (Fig. 6).

Object Request Broker

Server

CORBA API Object Adaptor

Client

Object Request Broker

 Message
Processor

 Network
Monitor

CORBA API Object Adaptor

Client Shell Server Shell

Figure 5 : Processing a Service Request in
CORBA

Figure 6 : Processing a Service Request in
ROPE using CORBA

All the shells provide the same services and therefore have the same IDL interface
description. What distinguishes a shell from other shell is its identifier. Therefore, the binding
of a service request is dynamic, since the shell must select the right server (shell) to perform
the required service.

5. CONCLUSION

We developed a small scale prototype to evaluate the use of CORBA to handle the

communication between the shells. The results showed that multiple shells may share the
same IDL interface description, provided that they are uniquely identified. In ROPE, this
problem is readily solved, since each shell has a unique identifier, which can be used to
dynamically select the appropriate interface (therefore, the appropriate shell). From this result,
we conclude that a single communication protocol should be used to simplify the
implementation of the shell. We are currently working on a prototype ROPE shell using Java
where the communication layer will be handled by TCP/IP, independantly from CORBA.
The main limitations of the approach reside in two aspects~:

• Prior knowledge is required about the different systems (functions supported, databases
used, database structures, shared data elements). This knowledge, however, represents all
the information an enterprise should have about its information systems in order to use
and manage them properly. This knowledge may be changed over time. The shell will still
be able to perform its tasks properly, since the structure of the shell is static. The shell's

adaptiveness is achieved by the use of a rule segment, which is in fact a subset of the
Metadatabase.

• Interfaces between the shell and the local system must be developed on an ad hoc basis.
This limitation is not as difficult to overcome as it seems. In the original shell, the local
configuration of the shell included a series of commands that may not be supported by the
local C compiler and the local operating system. The use of Java to develop the shells
solves most of these problems. It does not, however, solve the access to the local database
problem, which depends on the database management system (DBMS) used. It may be
argued that the number of DBMS vendors is not that large and that specialized modules
may be developed for each of these vendors. Furthermore, the use of JDBC (Java
Database Connectivity) methods may be seen as a transparent solution to this last

problem.
Therefore, the key to integration is and remains knowledge about the systems to integrate. If
information systems are willing to share there metadata, which should not compromise their
data, at least not directly, an approach similar to the Metadatabase could be developed to
share processes and data. It would seem interesting to investigate how the Metadatabase and
ROPE concepts may be implemented in a WOS environment.

REFERENCES

[1] G. Babin. Adaptiveness in Information Systems Integration. PhD thesis, Decision
Sciences and Engineering Systems, Rensselaer Polytechnic Institute, Troy, N.Y.,

August 1993.
[2] G. Babin and C. Hsu. Decomposition of knowledge for concurrent processing. IEEE

Transactions on Knowledge and Data Engineering, 8(5):758–772, 1996.
[3] Bahri, S. La base de métadonnées et l'architecture concurrente : des «shells» orientés

objet. Masters thesis, Département d’informatique, Université Laval, January 1998.
[4] M. Bouziane. Metadata Modeling and Management. PhD thesis, Computer Sciences,

Rensselaer Polytechnic Institute, Troy, N.Y., June 1991.
[5] W. Cheung. The Model-Assisted Global Query System. PhD thesis, Computer

Sciences, Rensselaer Polytechnic Institute, Troy, N.Y., November 1991.
[6] W. Coleman et al. The FUSION method. Prentice Hall, Englewood Cliffs, New Jersey,

USA, 1994.

[7] D.M. Dilts and W. Hua. Using knowledge-based technology to integrate cim databases.
IEEE Expert, 3(2):237–245, 1991.

[8] C. Hsu. Enterprise Integration and Modeling — the Metadatabase Approach. Kluwer
Academic Publisher, Boston, Mass., USA, 1996.

[9] C. Hsu, G. Babin, M. Bouziane, W. Cheung, L. Rattner, and L. Yee. Metadatabase

modeling for enterprise information integration. Journal of Systems Integration,
2(1):5–39, January 1992.

[10] C. Hsu, M. Bouziane, L. Rattner, and L. Yee. Information resources management in
heterogeneous, distributed environments: A metadatabase approach. IEEE
Transactions on Software Engineering, 17(6):604–625, June 1991.

[11] Mowbray, T.J and R. Zahavi. The Essential CORBA. John Wiley, 1995.
[12] Object Management Group. The Common Object Request Broker: Architecture and

Specification. ACM Press, 1995.
[13] Shaefer, O. and C. Hsu. Distributed Rulebases for Real Time Process Control on the

Shop Floor: The Metadatabase Approach. ASME Material Handling, 2:49–59,
November 1994 .

[14] Tao, Y. Differential Control on Distributed Database Updates Using Concurrent
Rulebase Shells. PhD Thesis, Decision Sciences and Engineering Systems, Rensselaer
Polytechnic Institute, Troy, N.Y., June 1997.

[15] W. Wu and D. M. Dilts. Integrating diverse cim data bases: The role of natural
language interface. IEEE Trans. on Syst., Man and Cyb., 22(6):1331–1347, 1992.

	reference: Gilbert Babin, Waiman Cheung, Lester Yee, and Sofienne Bahri. "An Object Oriented Shell for Distributed Processing." in Distributed Computing on the Web Workshop (DCW'99). Rostock, Germany. June 1999. pp. 85-93.

