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RÉSUMÉ.  L’intégration de l’information nécessaire pour la manufacturation requiert
la traduction de systèmes fonctionels variés, utilisant divers paradigmes (par exemple
entité-relation, relationel et objet).  Afin de faciliter cette tâche potentiellement acca–
blante, un meta-modèle servant de schéma conceptuel à l’intégration autant lors du déve-
loppement que lors de l’exécution est nécessaire.  Le présent article présente une structure
spécifique de ce concept et discute du potentiel du modèle TSER (Two-Stage Entity-Rela-
tionship) en tant que meta-modèle pour les méthodes orientés-objet, le modèle relationel et
les modèles entité-relation.  Les connections au modèle PDES/EXPRESSsont inclues.

ABSTRACT.  Manufacturing information integration requires translations among var-
ious functional systems’ information models which are based on different paradigms (e.g.,
Entity-Relationship, Relational, and Object). In order to facilitate this potentially
overwhelming task, a meta-model is needed to serve as the conceptual schema for models
integration at both development phase and run-time. This paper presents a particular
framework for the concept and discusses the promises of the TSER (Two-Stage Entity-
Relationship) model as a meta-model for Object-Oriented Methods, the Relational model,
and Entity-Relationship models.  The connections to the PDES/EXPRESS model are
included.

MOTS CLÉS:  Méta-modèles, Intègration de l’entreprise, Modélisation de l’informa-
tion, Gestion des données.



KEY WORDS: Meta-Models, Enterprise Integration, Information Modeling, Data
Management.

1. Meta-Model : The Conceptual Schema for Integrated Multi-Model
Environments

Business databases, manufacturing databases, and engineering design
databases have traditionally followed different paths of evolution  and espoused
different paradigms, although they are all based on the same information tech-
nology.  To compound the situation further, each paradigm has also prompted a
number of different modeling tools since the advent of Computer-Aided
Software Engineering (CASE).  The integration of manufacturing functions must
deal with the full scope of paradigm translation problem facing business, manu-
facturing and engineering design databases pertaining to the enterprise.  Current
strategies commonly employed by companies range from the formation of the
so-called strategic alliances to reduce the number of different systems involved,
all the way to the adoption of a common standard for all systems.  The problem
with a common standard is, ironically, the lack of a standard that is acceptable
to the industry, suitable to all requirements, and adaptable to changing technol-
ogy.  The strategic alliance approach tends to rely on "hand-shaking", i.e.,
developing peer-to-peer solutions on an ad hoc basis, and hence is prone to suf-
fering from the sheer size of (potential) number of pairs and is vulnerable to
change to the contents of the models as well as to the compositions of the al-
liance.

Therefore, the notion of using a meta-model to anchor these paradigm trans-
lations has emerged recently.  It can be traced back to the early IRDS work in
U.S. [ANS 85, DOL 87] and the CIMOSA project in EC [ESP 89], among others.
Major ongoing  industry-led efforts under ISO include PDES community’s pro-
ject on developing a general information model for product design and process
planning , and the IRDS community’s endeavor under ANSI for formulating an
encompassing framework involving common data and knowledge representation
methods and ontology [FUL 92, PAT 92, SOW 91]. Considering their all-
encompassing nature, these visions may turn out to more likely be high-level
reference models than particular meta-model solutions that can be immediately
implemented for the needing manufacturing enterprises. In any case, many
manufacturers can use compact solutions that are non-overwhelming in effort,
reasonable in cost, and yet sufficiently support their integration needs. A partic-
ular meta-model system using the Two-Stage Entity-Relationship (TSER)
method [HSU 85, HSU 92] and the Metadatabase model [HSU 87, HSU 90,
HSU 91, HSU 92, HSU 93b] is developed to provide a compact solution for this
purpose.

The substantiation of the meta-model concept in this system spans three
levels:
(1) At the modeling (or metadata) level, the meta-model is a neutral paradigm

serving as the common representation method that all paradigms are trans-
lated into.



(2) At the models integration (or metadata management) level, the meta-
model is a generic metadata schema abstracting and structuring all models
into an integrated enterprise metadatabase.

(3) At the information management (or data instances) level, the meta-model
is the integrated enterprise model contained in the metadatabase.

Clearly, the meta-model system is envisioned to not only support CASE
tools management and paradigm translation per se, but also utilize the resultant
metadata capabilities to directly facilitate the management of application
information systems across the enterprise. The above concept is illustrated in
Figure 1, where the Paradigm Translation Knowledge Kernel contains mapping
knowledge for a layered mapping approach progressing from particular tools to
their generic paradigms, then to the common core, as depicted in Figure 2.

The basic advantages of this meta-model approach are that, the complexity
of the translation problem is simplified from exponential (pairwise connection)
to polynomial through the use of such an enterprise conceptual schema. The
impact of any change to existing application models and systems, or addition of
new ones, on the rest of the enterprise is also minimized. The feasibility of the
system is demonstrated in a prototype at the Adaptive Integrated Manufacturing
Enterprises Program at Rensselaer Polytechnic Institute, Troy, New York,
U.S.A. [HSU 93a, HSU].
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Figure 1.  Enterprise Information Integration Using Meta-Models

The TSER method provides the meta-model at the first, modeling level;
while the Metadatabase model which is itself represented using TSER avails
the second (through its schema) and the third (through its instantiation) levels
of meta-model.  This completeness is a unique characteristic of the meta-
model: it provides a seamless integration of functionalities at all levels as well



as a logical synergism of these metadata concepts.  In comparison, virtually all
other results in the field fall either in the category of information modeling
(level one plus aspects of level two) [ANS 85, FUL 92, PAT 92, SOW 91], or
in multiple-databases management (level 3 plus aspects of level 2 — see [BAB
93, BOU 91, CHE 91, SHE 90] for some analyses and surveys).  The value of
such an integrated solution for the enterprise information integration problems is
sufficiently documented in the metadatabase literature.  TSER alone, as a
meta-modeling method, offers an implementation-proven compactness if not
comprehensiveness in the field.  As discussed above, we believe that a major
contribution in compactness that facilitates the actual implementation and
therefore fosters the real integration is needed.

With the particular concept of meta-models in this system formulated in this
section for the first time, Section 2 reviews TSER and Metadatabase based on
our previous publications (especially [HSU 91, HSU 92]). The modeling and
paradigm translation algorithms are discussed respectively in Sections 3 and 4.
The prototyping environment is summarized in Section 5 along with concluding
remarks. Sections 1, 3, and 4 represent original contributions of this paper to
meta-models.
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Figure 2.  The Paradigm Translation Knowledge Kermel for Layered Mapping

2. The Two-Stage Entity-Relationship (TSER) Approach to Meta-Models

The perfect but unlikely meta-model evidently must support all conceivable
paradigms now and in the future. A little more realistic expectation is that an
ideal method would satisfy several requirements that can be derived from the
literature and the above vision.  The requirements include (1) the ability to rep-
resent major classes of knowledge concerning manufacturing processes in oper-



ating, control, and decision areas, (2) the inclusion of all pertinent models from
a multi-stage analysis and design life cycle, (3) the neutral accommodation of
heterogeneous data views (especially relations and object hierarchies), and (4)
the unified representation of the full content of these metadata.

Concerning the representation of knowledge, a major element of these
classes of knowledge is "flows" or dynamics that can be characterized with
digraphs, such as data flows and control flows in the model.  These global flows
cannot be sufficiently represented through any implicit methods that embed
knowledge into an encapsulation around data types.  Such encapsulation meth-
ods are amenable mainly to localized triggers, contingency definitions, and
other similar application logic.  A combination of encapsulation and digraph
techniques using certain generic primitives would suffice the need.

An objective for combining multi-stage models is isomorphism.  That is, the
mapping from a model at one stage of the life cycle to a model at the next
stage should be complete and accurate.  A corollary of this isomorphism is a
reversible modeling process where, after the initial development of systems has
long been completed, the information models that resulted from the initial anal-
ysis and design can be recovered from the metadatabase.

On the issue of data representation, a clear need is to encompass hetero-
geneity as exemplified by the relational approach and the object-oriented
paradigm, two recent alternative models.  It is evident that each has revealed
certain unique but fundamental elements of the science of data modeling that
have to be considered by any general model.  In particular, the relational
approach has, among other things, established the dependency theory for data
integration (i.e., removal of redundancy) and the principle of separating
applications and user views from common data structures; while the object-
oriented paradigm asserts (or reasserts) the data abstraction hierarchy and
integration of certain classes of transactions with data modeling.

There is probably no ideal method existing presently that satisfies all of the
above requirements.  However, the meta-model scope and structure aim directly
at subjects of databases and their contexts for information integration, leading
to a particular representation method which is discussed below.

2.1. The Modeling Method : TSER

The Two-Stage Entity-Relationship (TSER) model was first developed to
integrate some tasks of system analysis with database design in complex enter-
prises and was later expanded to include knowledge representation.  It entails
two levels of modeling constructs devised respectively for semantics-oriented
abstractions (i.e., the functional constructs defined below) and cardinality-ori-
ented (normalized) representations (i.e., the structural constructs defined
below) of data and production rules.  The constructs allow for top-down system
development, as well as bottom-up design, i.e., reverse engineering of existing
applications or software packages into the TSER constructs.  There are rigorous
TSER algorithms which map from semantic to structural models and these algo-
rithms ensure that the resulting structures are in at least third normal form.
TSER algorithms also integrate views, thus allowing systematic consolidation



of any number of data models.  The integrity constraints built into the TSER
constructs are used to facilitate the management and control of the meta-
database.

2.1.1. The Functional (Semantic) Modeling Constructs

The first stage features user-oriented semantic-level constructs for object-
hierarchy and processes representation. They are used for system analysis and
information requirements modeling; referred to in TSER as the Functional (or
SER) Level Modeling Constructs; and employed exclusively for capturing
semantics. The constructs include the following :

Subject: �  � � � � �

Primitives: Contains data items (attributes), functional dependencies (among
data items), intra-SUBJECT rules (triggers, events, and dynamic defini-
tions of data items belonging to a single SUBJECT), and association hier-
archies (explodes as well as generalizes and aggregates SUBJECTs).
Specific types of association include : classification (single and multiple
inheritance — mandatory relationships), grouping (partial and function-
defined inheritance — functional relationship) and process (no inheritance
— no integrity implications on information management).

Description: Represents functional units of information such as user views and
application systems, and is analogous to frame or object.

Context: � � � � � � �

Primitives: Contains inter-SUBJECT rules (characterized by references to data
items belonging to multiple SUBJECTs), typically includes directions of
flows for logic (decision and control) and data (communication, etc.). It is
allowed to contain only descriptive rules used for holding together a set of
SUBJECTs or SER models that otherwise do not have direct associations.

Description: Represents interactions among SUBJECTs and control knowledge
such as business rules and operating procedures and is analogous to process
logic.

Note:
(1) The full contents (as applicable) must be specified for all SUBJECTs at

the leaf level of the SUBJECT hierarchy.  The class hierarchy implies in-
tegrity rules for applications, but its presence is not required.

(2) Rules are constructed in the form of (a subset of) predicate logic where all
clauses must only consist of the logical operators and the data items that
have been declared or defined in the SUBJECTs (except for certain key
words such as do and execute.). A data item may be defined to represent an
executable routine, algorithm, or mathematical expression.

(3) The three types of association of Subjects may exist simultaneously in a
model and thereby create three abstraction plains for Subjects; namely, (i)
generalization and strong aggregation (the classification type), (ii) ad hoc



aggregation (the grouping type), and (iii) simple decomposition similar to
Data Flow Diagram and IDEF (the process type).

2.1.2. The Structural (Normalized) Modeling Constructs

The second stage is concerned with providing a neutral normalized represen-
tation of data semantics and production rules from functional model for logical
database design; and referred to in TSER as the structural (or OER) model.
There are four basic constructs described below.

Operational Entity (OE): � � � � � �

Description: Entities; identified by a singular primary key and (optional) alter-
native keys and non-prime attributes, and implies Entity Integrity : no com-
ponent (attribute) of a primary key may accept null value, and no primary
key (as a whole) may accept duplicate values.

Plural Relationship (PR): � � � �  �! " �  # $ % & ' ( $ )

Description: Association of entities; characterized by a composite primary key
and signifying a many-to-many and independent association, and implies
Associative Integrity : each of the PK's component attributes must be a PK
of some Entity and its values in the PR must match that in the Entity.

Functional Relationship (FR): * + , - . / 0 , 1 23 4 2 1 . / 0 , 5 6 / 7, 8

Description: A many-to-one association that signifies characteristic traits or
composition relationships (corresponding to the grouping type of associa-
tion of SUBJECTs).  FRs represent the referential integrity constraints
implied by the existence of foreign keys.

The arrow side is called the determined side and points to either an OE or
a PR, while the other side is called the determinant and is also linked to
either an OE or a PR.  The primary key of the determined side is included
as a non-prime attribute (i.e., a foreign key) of the determinant side.
Referential Integrity : the value of every foreign key in the determined
must either be null or be identical to some PK value in the determinant.

Mandatory Relationship (MR): 9 1 , : 1 . 0 ; <3 4 2 1 . / 0 , 5 6 / 78 ,

Description: A one-to-many fixed association of OEs that signifies derived and
inheritance relationships (corresponding to the classification type of asso-
ciation of SUBJECTs).  MRs represent the existence-dependency con-
straint, and are symbolized as a double diamond with direction.

The “1” side is linked to the owner OE while the arrow side points to the



owned OE. Existence Dependency : when the owner instance is deleted,
then all owned instances associated will it must also be deleted; and there
is a foreign key implied in the owned whose value must match exactly the
owner’s PK value.

Note:
(1) In both top-down design and reverse engineering, the structural model is

typically derived automatically from the functional model by using the
TSER normalization and mapping algorithms.

(2) While there usually are multiple functional models representing different
views or application systems of an enterprise model, there always exists
only one integrated structural model for the global system.
In sum, underlying these constructs at both stages are two types of primi-

tives: data items and predicate logic.  Therefore, the basic structure of TSER
metadata is characterized by (1) data representation as relations, (2) knowl-
edge representation in the form of production rules, and (3) the two representa-
tions being tied via data items.

2.2. The Meta-Model for Information Modeling

The translation of usual paradigms into TSER would be best comprehended
by first examining the inner working of TSER as a modeling paradigm itself.
From the perspective of an information modeling methodology, the TSER
method may be described as follows. There are actually a variety of modeling
perspectives supported by TSER, including data modeling, knowledge model-
ing, and functional modeling that combines both. The set of constructs for func-
tional modeling is comprised of SUBJECTs and CONTEXTs and is used to rep-
resent data semantics and knowledge as viewed from an application level or a
systems analysis perspective.  These constructs may be employed in their
entirety or just subsets of them, depending on the perspective and tasks
intended.  To illustrate how SUBJECTs and CONTEXTs may be employed sep-
arately to perform some major tasks for data or knowledge modeling, they are
compared to certain traditional notions in Table 1. Perform traditional data
modeling tasks for, say, relational database design would not require
CONTEXTs (or even the intra-subject knowledge).  A model using SUBJECTs
alone would suffice the requirements of semantic data modeling, and then lead
to the normalized structure (OER) through the attendant mapping algorithms.
Similarly, Subjects could serve as only certain reference points for recognizing
and grouping rules via Contexts in rulebase modeling. When, on the other hand,
both SUBJECT and CONTEXT are used, the resulting model would encompass
what is usually referred to as functional models of structured systems analysis.
Again, in the case of TSER, the functional level model would include data
semantics and knowledge which would then be structured into normalized com-
bined representations, i.e., the structural level model. The structural modeling
constructs are one type of entity and three special types of associations that
refine the representation of data and production rules captured in the functional
model of logic design.  They, too, may be decoupled from the functional con-
structs and used for modeling in their own right.  In this manner, they can be



compared to the traditional Entity-Relationship model except for the rigorous
definitions in TSER.  These definitions ensure proper data structures and
integrity rules for the design of databases or rulebases or their combination.

In the usual case where the models of more than one system are being
developed, a three-step process for basic global information modeling is used.
First, a functional model (hierarchy) for each application system is created;
second, each model is mapped to its corresponding structural model; and third,
the several structural models are consolidated into a single global structural
model using dependency-theoretical principles (e.g., normalization).  When
systems integration is actively formulated on top of this basic model, step 2
would be expanded to provide a single functional model.  That is, the several
functional models would be integrated into a global functional model by
creating and populating inter-application CONTEXTs with the control knowl-
edge and operating rules that define the interactions among application
systems. This process represents the traditional top-down modeling in the
common life cycle of systems analysis and design.

Constructs Perspective Comparable Methods
Subject (used alone) Data Modeling Semantic Data Models and

Object-Oriented Models
Context (used alone) Knowledge Modeling Process and Flow Models,

and Rule-Based. Models
Subject and Context Functional Modeling Functional Models

(e.g., DFD and IDEF0)
Entity and Relationships
(used directly)

Data Modeling Entity-Relationship Models

Table 1.  The TSER Modeling Portfolio

Paradigm translation, on the other hand, is based on bottom-up reverse engi-
neering. This process, however, will piggy-back on the top-down capability of
TSER. In essence, reverse engineering calls for a general guideline whose
specificity depends largely on the particular systems to be translated in reverse
engineering.  The general guideline employs TSER functional constructs to rep-
resent the local models and then proceed from there following the usual (top-
down) methodology.  For example, base relations, views, or data files would be
represented as subjects, with additional data semantics being modeled into
functional dependencies, intra-subject rules, or contexts.  A specific algorithm
for file systems is presented in [HSU 90]. Relational systems and other Entity-
Relationship models are clearly compatible with being modeled as SUBJECTs.
A remaining major task is to translate Object models into TSER; this task is
accomplished in Section 4. The above logic is depicted in Figure 3, which
includes both top-down modeling and reverse engineering approaches.

2.3. The Metadatabase Conceptual Schema Using TSER

The Metadatabase is constructed from combining all models and views in
Figure 3, along with other classes of metadata such as software and hardware
resources. All of these combined metadata are organized according to a



conceptual schema which is the meta-model for models (or metadata
resources) integration. The populated metadatabase directly participates in the
management of enterprise information and facilitates the integration of local
systems.  Therefore, the metadatabase becomes a data instance level meta-
model not only to support CASE tools and other passive metadata applications,
but also to effect functionalities needed in global query processing and systems
interactions [CHE 91, HSU 92].

The development of this generic metadatabase schema is fully reported in
[HSU 91]. In a nutshell, the schema follows directly from Figure 3 and contains
all three classes of views (application, functional, and structural) plus resources
views, in all enterprise models and the logical interrelationships among these
views towards effecting data and knowledge integration and management.
When fully elaborated, the structure is shown in Figure 4. This structure is
based on TSER modeling constructs (a class of self-descriptiveness) and hence
is generic excepting Software and Hardware Resources, which are extensible
depending on particular enterprises.
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Figure 3.  TSER As a Meta-Model for Information Modeling
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Figure 4.  The Meta-Model for Integrated Enterprise Information Models

3. Basic Mapping Algorithms of TSER

There are two basic groups of mapping algorithms supporting TSER as a
modeling method. The first derives normalized structures from the functional
model and the second uses the resulting structures to design database schema,
including relations and integrity rules, object-oriented hierarchies, and
CODASYL data structures. In addition, the rules that are captured in the func-
tional model (Context and Subject) are also grouped into a persistent rulebase
model associated with the data structures that use them/they use. This grouping
is performed directly according to the schema of the rulebase; which is devel-
oped using the same principles of the metadatabase schema and the same de-
pendency theory that the structural mapping for database design employs. In
addition to these two basic groups are algorithms that perform paradigm transla-
tions for specific target models.



3.1. Functional-to-Structural Mapping Algorithm

The mapping process is carried out in three main steps. The first step, called
DECOMPOSITION, creates a submodel for each SUBJECT in the hierarchy
(excepting the process type of association - or, decomposition plain, where only
the leaf level SUBJECTs are substantive for mapping) and analyzes its basic
cardinality. The second, NORMALIZATION step, improves and simplifies the
data structures within each submodel based on dependency theory. Finally the
third step, CONSOLIDATION, links and merges these submodels to produce an
OER model corresponding to the SER in the input. The global variables used by
the three steps are categorized as follows:

A. Fields : which represent the fundamental (generic or worldlike) objects.. The value of a field can be either a
simple atom such as the name of an entity or relationship, or a group of atoms such as the attributes of an
entity or relationship. These fields are the following:

NAME : represents the name of a structure (entity or relationship).
KEY : the primary key of a structure.
ALTKEY : the alternate keys.
NONKEY : the non-key attributes of a structure.
TYPE : A designation telling whether the structure is an OE, PR, MR, or FR.
INVOLVEDIN : A list of the entities and relationships involved in a PR, or associated with an OE.
OWNER, OWNED : used only in MR structures to denote the owner and owned side of an MR,

respectively.
DETERMINANT, DETERMINED : used only with FR structures to denote the determinant and the

determined sides of an FR, respectively.
FDS : a list used only in the SE's to contain the list of all the functional dependencies among its attributes.
PR-DANT : a list used to contain the list of all composite determinants in FDS which are partially involved

with key attributes.

B. Structures : Two fields or more are grouped together to form a structure, which can be a semantic entity or
an operational entity/relationship. There are six major types of structures :

SE : represents a Subject; it has four fields : NAME, KEY, NONKEY, and FDS.
OE : represents an entity, consisting of five fields : NAME, TYPE, KEY, NONKEY, and INVOLVEDIN.
PR : represents a plural relationship. It contains the same fields as an OE.
MR : represents a mandatory relationship, consisting of the fields: NAME, TYPE, KEY, OWNER, and

OWNED.
FR : represents a functional relationship using four fields : NAME, TYPE, DETERMINANT, and

DETERMINED.
GROUP : this structure is used only in the Normalization step. It represents a collection of non-key attributes

related to each other by a FD. It consists of two fields: DANT for the determinant side and DED or the
determined side of a FD.

C. Lists : Groups of structures sharing some properties are linked together to form lists. The major lists used in
the mapping algorithms are:

SER : a list  of all the Subjects in the input.
SM : a list of Subjects and Contexts in a submodel.
SMS : a list of all the submodels.
OER : the results of the mapping, which is a list of all the entities and relationships in the OER model.
GROUPS : a list whose elements are of type GROUP.
ASS-ATT : a temporary list, used to keep track of the non-key attributes already assigned to the OE's

created during the decomposition.

3.1.1. The DECOMPOSITION Step

An SE having a composite primary key (PK) is recognized as an association
of some generic entities. Thus, it is decomposed into a plural relationship (PR)
and certain operational entities associated with it. The PR inherits the name
and the primary key of a particular OE in the relationship. Then the non-key
attributes of the SE in question are assigned among the PR and its OE's accord-



ing to the functional dependencies ( and also be asserted by the semantic rules
in the knowledge base). However, if the SE's PK is singular, it is identified as
an OE. The result of this process in either case is declared as a submodel. This
information of submodels provides an access path for information production.
Procedure for this step is given below:

Procedure DECOMPOSITION (SE);
begin

PK:=SE.KEY;
AK:=SE.ALTKEY;
NPK:=SE.NONKEY;
FD:=SE.FDS;
PR-DANT:=Get_PR-DANT(SE.FDS);
if  Length(PK) > 1 then
begin /* case of composite key */

PR:=create('PR');
PR.NAME:=SE.NAME;
PR.KEY:=PK;
ASS-ATT:=NIL;
Dants:=FirstSet(PR-DANT);
while Dants ≠ NIL do

SubPR:=create(‘PR’);
SubPR.NAME:=Naming(‘PR’, Dants);
SubPR.KEY:=Dants;
SubPR.NONKEY:=AssignAtt(Dants, NPK, FD);
Insert(SubPR, SM);
Dants:=NextSet(Dants, PR-DANT);

end;
K:=First(PK); /* start with the first component in PK */
while K ≠ NIL do
begin /* for each component in the PK an OE is created */

OE:=Create('OE');
OE.NAME:=Naming('OE',K); /* give the OE a name */
OE.KEY:=K;
OE.NONKEY:=AssignAtt(K, NPK, FD);
OE.INVOLVEDIN:=PR.NAME;
PR.INVOLVEDIN:=AddList(PR.INVOLVEDIN, OE.NAME);
UpdatePR_Involved(OE, PR-DANT, PK, SM);
Insert(OE, SM); /* Store OE's in corresponding submodel */
K:=Next(K, PK); /* proceed to the next component in PK */

end;
PR.NONKEY := Difference(NPK, ASS-ATT);
Insert(PR, SM);

end;
else /* case of singular PK, just one OE is created in that SM */
begin

OE:=Create('OE');
OE.NAME:=SE.NAME;
OE.KEY:=PK;
OE.NONKEY:=NPK;
Insert(OE, SM);

end;
end;

3.1.2. The NORMALIZATION Step

After decomposition, the next step is to identify the OE's and OR's that are
embedded in the data abstraction in a submodel. Therefore, the second step de-
composes the structures further to ensure at least the Boyce-Codd normal
form(BCNF) for all OE's and the third normal form for all OR's. It first
unbundles the nested FD structures (if any) in the PR via the definition of new
PR's, then removes the transitive functional dependencies (TFD) by represent-
ing them through functional relationships(FR's). At the end, it compiles all the
relationships as necessary to include the semantic information.

Procedures NESTEDRELATIONS (ER) and TFD (ER) are devised for the



further decomposition, but they are omitted from here due to space considera-
tions; This decomposition is performed recursively, using two list for the same
model: namely, TSM, which contains the OE's and PR's to be checked for
TFD's, and SM which stores an OE or OR only if it does not contain any TFD.

All the relationships in a submodel after the normalization are compiled
according to both the modeling rules and the operating knowledge (e.g., fixed
associations between entities). The TSER system, when implemented, guides
the user to make decisions based on the semantic rules. Examples include
deciding when a PR or a FR should be declared as an MR; or providing a
singular identifier for a PR; or converting an MR into an OE (see [HSU 85] for
details). These rules are a part of the modeling knowledge in the knowledge
base. This normalization step is summarized in the procedure below:

Procedure NORMALIZATION (SM);
begin

TSM:=NIL; /* TSM is a temporary submodel to alternate results */
ER:=First(SM);
while  ER ≠ NIL do /* second normal form */
begin

if  ER.TYPE  =  'PR'
then NESTEDRELATIONS(ER)
else  Insert(ER, TSM);

ER:=Next(ER, SM);
end;
SM:=NIL;
ER:=First(TSM);
while  ER ≠ NIL do /* third normal form */
begin

TFD(ER);
ER:=Next(ER, TSM);

end;
RelationCompilation(SM); /* compilation of the relationships */
Insert(SM, SMS); /* store the SM contents and information in SMS */

/* to be used in the third step */
end; /* procedure NORMALIZATION */

3.1.3. The CONSOLIDATION Step

The objective of this step is to produce the final OER model by connecting
all submodels. This connection is made according to the modeling rules and the
classification-specific knowledge in the knowledge base. Some of the rules
include : (1) merging, respectively, the identical entities and relationships
whose PKs are identical, (2) creating FR's through foreign keys, and (3) creat-
ing MR's or FR’s between the submodels corresponding respectively to a
superSE and its subSE according to association types (i.e., MR’s for classifica-
tion types and FR’s for grouping types). All entities and relationships will be
consolidated using certain heuristics to simplify their structures. The overall
mapping algorithm is as follows:

Program SER->OER Mapping
begin

SMS:=NIL;
OER:=NIL;
Input(SER);
if exists Inheritance relationships in SER

/* association types are “classification” or “grouping” */
then for each SE in SER /* the whole hierarchy tree*/
else  for each SE in leaf level of SER

/* exists Decomposition relationships only */
do



begin
SM:=NIL;
DECOMPOSITION(SE);
NORMALIZATION(SM);

end;
CONSOLIDATION(SMS);
Output(OER);

end.

The user (database designers) may modify the OER model derived by TSER
to, e.g., obtain higher normal forms for data structures. These modifications can
also be represented by virtue of the OER construct according to the definitions
of OE, PR, FR, and MR. In any case, the finalized OER will, on the one hand,
retain complete connection with the SER thereby allowing "zoom-in and zoom-
out" between any levels of abstraction; it will also, on the other hand, lead to a
complete schema design for target (or local) database systems.

3.1.4. Additional Algorithms : Models Integration, Rulebase Mapping, and
Metadatabase Creation

The above mapping algorithms can be applied to two or more functional
(SER) models as well. These multiple SER models may be results of paradigm
translation from object-oriented, relational, or other entity-relationship models;
they may also be other TSER applications (see Figure. 3). The
CONSOLIDATION step will be executed to consolidate these models two at a
time, after each is completely mapped to the structural model (OER).
Additional metadata such as equivalence of data items across models will be
employed in the step.

On the knowledge side, the rules in Contexts and Subjects will also be
related to all Entities and Relationships, which they as a whole are mapped
into the rulebase model discussed in Section 3.3.

Finally, TSER extends to create the metadatabase conceptual schema (see
Figure 4) for the enterprise models, and populate the metadatabase. This con-
ceptual schema can be implemented in a number of paradigms just as any other
OER model by using the algorithms discussed next.

3.2. CODASYL, Relational,  and Object-Oriented Models Creation

The TSER models are translated directly into the CODASYL, relational,
and object-oriented models, where only the latter needs the functional model
(SER). A general framework for paradigm translation into the object-oriented
models is outlined below.

Algorithm M1  : Mapping of TSER into Object-Oriented Models.
Step 1.a : SER -> O-O (option (a))

* Create an Object Class for every Subject, containing all attributes and knowledge.
* Create an Object Class hierarchy corresponding to the inheritance relationships among Subjects (i.e.,

association types “classification” and “grouping”).
* Go to Step 2.

Step 1.b : SER+OER -> O-O (option (b))
* Create Object Classes from the OER model using Algorithm M2.
* Create an Object Super-Class for each Subject, containing only an object identifier  and (all) intra-

subject knowledge.
* Create a class hierarchy associating these Object Super-Classes according to the inheritance

relationships among Subjects.
* Create an inheritance (the classification type of association) between each Object Super-Class and



the Object Classes created above from the OER model that corresponds to its Subject.
Step 2 : Distribution of inter-Subject rules into Object Classes.

* Rules in every Context are incorporated into Object Classes according to the data items referenced in
their condition clauses :

* If the data items referenced in a rule belong mostly to a particular Subject, then the rule is
incorporated into the Object Class corresponding to the Subject; otherwise use a tie breaker.

The structural model (OER) provides normalized data structures for imple-
mentation in any database. While directly leads to a relational model, it also
fully characterizes a CODASYL model and avails a sound design for persistent
objects at the foundations of objects class hierarchies.

Algorithm M2  : Mapping of OER into CODASYL, Relational, and Object-Oriented Models.
Step 1: Convert each Relationship (along with its participating Entities) individually into the target model

according to the mapping rules depicted in following graphs.
Step 2 : Declare appropriate integrity constraints according to the OER structure :

(a) For relational models: implement the key integrity rule for the OE's, and the referential integrity rule
for the OR's.

(b) For CODASYL models: implement the regular, mandatory, and fixed membership classes for FR's,
PR's, and MR's, respectively.

(c) For object-oriented models: implement the association types into appropriate inheritance rules
available in the models/systems.

Step 3 : Implement the rules in the software environments (this step is implementation-specific).
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3.3. Rulebase Model Creation

The rulebase model is anchored in three basic results established in the lit-
erature: (1) the metadatabase model for overall metadata integration, (2) the
TSER model for information modeling primitives (metadata classes), and (3)
the expression grammar, along with predicate logic, for production rule struc-
tures.  The basic approach used in modeling knowledge in the metadatabase
combines ideas from production rules, frames, and object-oriented representa-
tions, through the TSER modeling methodology.

The basis of this derivation is the specific grammar of rules that we con-
structed from general results in the field. It is shown as G1 and G2 below.



G1: (1) <Rule> ::= IF <Condition> THEN [<Action>]+

(2) <Condition> ::= <Expression>
(3) <Action> ::= <Declarative-Statement> | <Assignment-Statement>|

<Procedure-Call>
(4) <Assignment-Statement> ::= <Action-Ident> := <Evaluated-Fact>
(5) <Procedure-Call> ::= Procedure-name([<Parameter-List>]* )

G2: (1) <Expression> ::= <Fact> <Operator> <Fact> | <Fact>
(2) <Fact> ::= <Evaluated-Fact> | <Declarative-Statement>
(3) <Evaluated-Fact> ::= <Simple-Fact> | <Composed-Fact>
(4) <Simple-Fact> ::= Constant | Item | <User-Ident> | <Action-Ident>
(5) <User-Ident> ::= Identifier
(6) <Action-Ident> ::= Identifier
(7) <Composed-Fact> ::= <Function-call> | <Expression>
(8) <Function-call> ::= Function-name([<Parameter-List>]* )
(9) <Parameter-List> ::= <Parameter>[, <Parameter-List>]*

(10) <Parameter> ::= <Fact>
(11) <Declarative-Statement> ::= <Simple-Fact> Verb <Simple-Fact>
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Figure 5.  The Rulebase Model

TSER constructs are employed to represent the different components of the
rulebase according to G1 and G2, and are consolidated into an overall normal-
ized model shown in Figure 5, which is, in turn, incorporated into meta-model
in Figure 4. The result of this consolidation also constitutes a generic structure
for the rulebase model.  This model can be implemented using commonly
available database technology (such as relational databases) and routines/files
manager plus an inference engine [BOU 91].  The active aspects of this model,
including rules management and operation in distributed environments, are fully
supported by the new ROPE (rule-oriented programming environment)
technology as discussed in [BAB 93].  Their details, however, are not included
in the space of this paper.



4. Paradigm Translation : The PDES/EXPRESS Case

EXPRESS is an information modeling language developed for product
design and engineering databases under the auspices of ISO/PDES endeavors. It
combines the traditional Entity-Relationship paradigm into the latest object-ori-
ented paradigm with rules [SAN 92, SMI 89]. The design also reflects a mix of
data modeling construct with certain software engineering concepts for
programming. As a result, EXPRESS is more powerful and complicated than
one would expect for an object-oriented data definitional language. A reverse
engineering success on EXPRESS paves the way for similar efforts on other
object-oriented systems and entity-relationship models in the field.

EXPRESS is based on an extensible object-oriented semantic association
knowledge model. It supports the basic association types of generalization and
aggregation among the primitive objects, called entities. Generalization associ-
ation is specified as "SUPERTYPE <classes/entities>" or "SUBTYPE
<classes/entities>", and aggregation association is in the form of
"instance_variable <aggregation>, key <identifier>." The class/entity properties
can be inherited through the generalization association. Behavioral properties of
a class/entity are specified as methods and rules. Also, in EXPRESS, there are
two major categories of item definition. One is the item defined by non-aggre-
gation type, i.e., items declared as real, integer, Boolean, Entity...etc. The other
is the items defined by aggregation type, i.e., items declared as array, list, bag,
set...etc. While the first category is straight forward, the second can be used to
imply aggregate-defined entity/object hierarchy. This category actually repre-
sents multiple/plural relationships among entities from a usual data modeling
perspective. The inheritance mechanism is the major characteristic of object-
oriented concept. In EXPRESS, there are two ways to define the inheritance
relationship between entities. The first is by using the keyword SELECT, which
allows a child-entity's attributes inherited from one of its parent-entities. The
second is by using the keyword SUBTYPE or SUPERTYPE, which allows a
child-entity's attributes inherited from several parent-entities.

A general algorithm mapping an EXPRESS model into the TSER model is
given below.

Algorithm RM1  : EXPRESS -> TSER
Step 1 : Convert the object definition into Subject.

* Create a Subject for each Entity.
* Create a Subject for each Type/Selection Type.

Step 2 : Model the specific item definition.
* Create Placeholder Identifier for each Subject if there is no UNIQUE (key declaration) item(s) in

Entity.
* Create same items in Subject for those items declared through non-aggregation type in Entity.
* Declare FR’s for those items declared through non-base type in Entity; also declare those items

equivalent to non-base type’s key
* Declare PR’s for those items declared through aggregation type in Entity.Declare FD’s as “(key,

aggregation type’s key) <-> (key, aggregation type’s key)” for PR-related items; and as “key -> other
non-key items” in Subject.

Step 3 : Model the inheritance constructs.
* Duplicate Super-Subject’s key in Sub-Subject for inheritance relationships (SUPERTYPE/SUBTYPE,

or SELECTION).
* Declare FD’s as “Sub-Subject’s key -> Super-Subject’s key”.

Step 4 : Model the methods/rules and other special definitions.
* For methods that return a value : define a data item representing each method and model the method

itself as an expression to be fired by a rule, according to the grammars of the rulebase model in
Section 3.3;

* For other methods : model them as rules with all variables classified into data items that correspond
to Subjects (names and attributes) and those that are other facts (also according to the rulebase



model).
* Create from methods and rules Inter-Subject rules for each Subject, according to the SUBJECT

definition.
* Create from methods and rules Intra-Subject rules in Contexts, according to the CONTEXT definition.
* Identify UNIQUE keyword and update declared items, FD’s, equivalence table in Subject if

necessary.
* Identify INVERSE keyword and update PR/FR declaration if necessary.

To illustrate this procedure, we first present an EXPRESS schema taken
from a sheet metal design database, then show the result of its reverse
engineering into TSER. Several comments follow. As shown in the example,
each object/entity (e.g. Feature and Point_2D) is mapped to a Subject at the
functional level.  Most instance_variables (e.g., feature_ID, x, y, etc.) are
attributes of a Subject. When converting the semantic meaning for the
inheritance constructs, the generalization association is represented by a
mandatory relationship (MR) and parent-entity's key (e.g., Feature's feature_ID)
is added as a foreign key to child-entity (e.g., Close_Loop). Concerning
methods (not shown in the above EXPRESS example) that return a value can
be treated as derived data items and the function itself will be referred to by
firing a rule. All other methods and rules can be mapped to operating rules of a
Subject. Some special definitions should also be considered while converting
EXPRESS into other models. One such definition is the keyword UNIQUE,
which allows an object to have a key in entity, thus, can be used to define
functional dependencies and the primary key for a Subject. Another is the
keyword INVERSE, which allows some relationship constraints between
entities, thus, implies necessary relationship modifications between Subjects.

The Example of Sheet Metal EXPRESS Model

SCHEMA SheetmetalObjects;

ENTITY Feature;
feature_ID: INTEGER;
UNIQUE single: feature_ID;

END_ENTITY;

ENTITY Point_2D;
x: Real;
y: Real;

END_ENTITY;

ENTITY Line;
start_Point: Point_2D;
end_Point : Point_2D;

END_ENTITY;

ENTITY Arc;
center_Point: Point_2D;
start_Point : Point_2D;
end_Point : Point_2D;

END_ENTITY;

TYPE
geo_Type = SELECT(Line,Arc);

END_TYPE;

ENTITY Closed_Loop
SUBTYPE OF (Feature);
geo_List: LIST\[0:100] OF geo_Type;

END_ENTITY;

...

ENTITY Sheetmetal_Feature

SUBTYPE OF Closed_Loop);
centerpoint : Point_2D;
theta_Rot : REAL;
datum_Feature : Feature;
location_Tol : Loc_Tol_2D;
gT_Position_Flag: BOOLEAN;
gT_Position_Tol : REAL;

END_ENTITY;

ENTITY Loc_Tol_2D;
x_Tol_Plus : REAL;
x_Tol_Minus: REAL;
y_Tol_Plus : REAL;
y_Tol_Minus: REAL;

END_ENTITY;

...

ENTITY Sheetmetal_Part;
plate_Charact : LIST 1:?] OF
Sheetmetal_Feature;

END_ENTITY;

ENTITY Product_Version
product : Product;

END_ENTITY;

ENTITY Product;
product_ID : STRING(5);
components: LIST [1:?] OF
Sheetmetal_Part;
UNIQUE single : product_ID;
INVERSE versions : SET[1:?] OF
Product_Version FOR product;

END_ENTITY;



END_SCHEMA;

The TSER results converted from the Example of Sheet Metal
Schema

SUBJECT Feature
ITEMS: feature_ID : INTEGER;
FD's : feature_ID <-> feature_ID;
END_SUBJECT;

SUBJECT Point_2D
ITEMS: $Point_2D : String;

x : Real;
y : Real;

FD's : $Point_2D -> (x, y);
END_SUBJECT;

SUBJECT Line;
ITEMS: $Line : String;

$geo_Type : String;
start_Point : String;
end_Point : String;

FD's: $Line -> (start_Point, end_Point);
$Line -> $geo_Type; // MR efinition

Declare : FR
Two FR between (Line, Point_2D) due to items
"start_Point" and "end_Point"
Equivalence :

(start_Point, $Point_2D)
(end_Point, $Point_2D)

END_SUBJECT;

...

SUBJECT geo_Type
ITEMS: $geo_Type : String;
FD's: $geo_Type <-> $geo_Type;
END_SUBJECT

SUBJECT Closed_Loop
ITEMS: $Closed_Loop : String;

feature_ID : INTEGER;
$geo_Type : String;

FD's: ($Closed_Loop, $geo_Type) <->
($Closed_Loop, $geo_Type)
$Closed_Loop -> feature_ID;  (MR)

Declare : PR

name of all key relation are "geo_List"
END_SUBJECT

...

SUBJECT Sheetmetal_Part
ITEMS: $Sheetmetal_Part : String;

$Sheetmetal_Feature : String;
FD's:
($Sheetmetal_Part, $Sheetmetal_Feature)
<-> ($Sheetmetal_Part, $Sheetmetal_Feature)
Decalare : PR

name of all key relation are "plate_Charact"
END_SUBJECT

SUBJECT Product_Version
ITEMS: $Product_Version: String;

product: String;
FD's: $Product_Version -> product;
Declare: FR

One FR between (Product_Version, Product) due
to item "product"

Equivalence :
(product, product_ID)

END_SUBJECT

SUBJECT Product
ITEMS: product_ID: String;

$Sheetmetal_Part : String;
versions : String;

FD's: product_ID -> versions;
(product_ID, $Sheetmetal_Part) <-> (product_ID,
$Sheetmetal_Part)

Declare : PR
name of all key relation is "components"

Equivalence :
(versions, $Product_Version)

** product_ID becomes the key of this subject due to
"UNIQUE" definition

** one PR has been replaced to be FR due to
"INVERSE" definition

END_SUBJECT

A structural model (OER) of the object example is shown in Figure 6. Note
that some of the relationships do not correspond directly to the original objects;
but rather, they represent certain semantic information derived from objects that
need to be represented in the metadatabase. For instance,  start_Point in Line
and Arc is associated with the equivalence definition start_Point = Point_2D.
Similarly, plate_Charact in Sheetmetal_Part serves as a representation of the
association between sheetmetal parts and features.
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Figure 6.  OER for Sheetmetal Model

5. Manufacturing Information Integration Using Meta-Models

The TSER approach to manufacturing meta-models calls for an information
modeling environment and a metadatabase system, as discussed in Section 1.
Both have been prototyped in an integrated manufacturing laboratory at
Rensselaer. Previous results of the prototypes facilitating integration are
reported in [BOU 91, CHE 91, HSU 92], continual research in the light of
Figures 1 and 2 is ongoing.  At present. all algorithms and models discussed in
this paper have been implemented, and their completeness and correctness in
actuality are under empirical investigations with satisfactory results.

The modeling prototype is coded mainly in C and implemented on three
platforms : IBM RS6000, DEC station, and PC. It performs the functions neces-
sary to support the first two levels (for modeling and models integration) of
meta-model, with the third level (for information management) achieved
through the metadatabase prototype. Both prototypes are connected to gain
maximal leverage on each others, but can function perfectly in their own.

The metadatabase system has been implemented on a MicroVAX platform
using Digital’s Rdb as the database engine for the metadatabase.  A new ver-
sion using the IBM AIX RS/6000 workstation and Oracle DBMS has recently
been completed to provide a multi-platform and distributed metadatabase envi-
ronment.  To facilitate user and program interactions with the metadatabase, a



shell has been developed in the C language.  Currently, enterprise users interact
via a menu (in the VAX version) or an X-Windows/Motif® (in the AIX version)
interface, while other systems interact through a metadatabase query language
application program interface (API). These other systems are manufacturing
application systems including Product Design using PDES/EXPRESS model
implemented on ROSE/RS6000, Shop Floor Control on ORACLE/PC, Process
Planning on dBase/PC, and Order Processing on Rdb/MicroVAX.

In sum, a compact meta-model solution is provided in this paper. The basis
of this solution, the TSER approach, is designed to be simplistic while accom-
plishing the necessary requirements of a meta-model method. At present, the
TSER approach supports rule-based systems, object-oriented models, Entity-
Relationship models, relational systems, CODASYL systems, and flat file sys-
tems in both concepts and methods; its software implementation includes auto-
matic paradigm translations for EXPRESS and SQL and metadatabase creation
capabilities for MicroVAX using Rdb and RS6000 using ORACLE. Its overall
ontology is compatible with the spirit of the IRDS standards [HSU 91]. Ongoing
research includes further development of paradigm translations for particular
models, database systems, and CASE tools. Development of a reference model
(in the sense of [ESP 89, RAT 90]) with economical evaluation capability to
guide integration modeling is an extension to the meta-model system; which is
currently underway.

As a final remark, we might mention three contributions of this paper: the
concept of meta-models, a complete model of its implementation using a
metadatabase, and a tested modeling environment for supporting the needs of
meta-modeling in a manufacturing enterprise.  Furthermore, the compactness of
TSER, as evidenced in its implementation, is a significant advantage compared
to other methods for models integration.
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