
Resource Warehouses: a Distributed Information Management Infrastructure

Simon Khoury�, Peter Kropf�, and Gilbert Babiny

�

University of Montreal
Department of Computer Science and Operations Research

Montreal, Quebec, Canada
felkhous,kropfg@iro.umontreal.ca

yHEC – Montreal
Department of Information Technologies

Montreal, Quebec, Canada
Gilbert.Babin@hec.ca

KEYWORDS

Distributed Systems, Communication Protocol, Middle-
ware, Resource Management, Web Operating System
(WOS), Resource localization.

ABSTRACT

This paper presents work related to the design of distributed
systems, which is useful for emerging Internet applica-
tions. We propose algorithms for searching and manag-
ing distributed information about resources and services
using locally available warehouses. The concept of ware-
houses has been introduced in the Web Operating System
(WOS) (Kropf 1999). Warehouses have the ability to de-
cide which information should be stored, replaced or re-
moved without any intervention of the user. We present
a tree structure for WOS warehouses, an attribute/value
scheme used for describing resources, and the algorithms to
look up information about resources. Among other things,
warehouses take into account the capacity limitations of
the devices that the WOS is using. Moreover, in order to
share locally available information, WOS warehouses need
to communicate with each other. We present an approach
which allows for profitable exchange of information be-
tween the various warehouses. The advantage of our ap-
proach is the use of a simple method to describe what is be-
ing looked for (i.e., the intent), instead of specifying where
to find it (i.e., the extent). We have implemented our ware-
house structure in Java taking advantage of its portability.

INTRODUCTION

The Web Operating System (WOS) was developed to pro-
vide a user with the possibility to submit a service request
without prior knowledge about the service (where it is avail-
able, at what cost, under which constraints, etc.) and to
have the service request fulfilled within the user’s desired
parameters (time, cost, quality of service, etc.). In other

words, the WOS is designed to enable transparent use of
network-accessible resources, whenever a user requires a
service, provided the service is available. These services
may be specific hardware or software, or a combination of
both. A user needs only to understand the WOS interface
and does not need to know how the service request is ful-
filled. Therefore, the WOS provides a computation model
and the associated tools to enable seamless and ubiquitous
sharing, and interactive use of software and hardware re-
sources available on WOS enabled systems over the Inter-
net. There exist numerous other projects with similar goals,
for example JINI (Waldo 1998), SLP (Guttmanet al. 1998),
INS (Adjie-Winotoet al. 1999), and JXTA (Gong 2001).
Each project has its own characteristics (service directories,
resources discovery and localization, etc.). The WOS uses
distributed databases, called warehouses, which allow open
access and search procedures. The work presented in this
paper proposes algorithms to efficiently search and man-
age the resources available in the system. In particular we
present the warehouse structure, the resource request and
look up algorithms, and warehouse management approach.

This paper is organized as follows: the next section
presents the search approach in WOS; in Section “Ware-
house,” we describe the architecture and the functionality of
the warehouses. Following that, Section “Implementation”
briefly presents our implementation, while Section “Re-
lated Work” discusses other applications similar to WOS.
Finally, we present future work planned for warehouses and
draw some conclusions in the last section.

THE SEARCH APPROACH

One of the greater challenges for the WOS is the implemen-
tation of an efficient algorithm to look up available services
or resources in the WOSNet, which is a set of nodes run-
ning a WOS software and knowing at least one other WOS
enabled node (i.e., there is an entry in the node’s ware-
houses referencing directly or indirectly that other node).
The WOS supports a search algorithm for finding the WOS
node providing the requested services with the best offer.
The search algorithm currently used in WOS to look for

available services continues until every WOS node is con-
tacted (Kropf 1999), or until the WOS node providing the
requested services with the best offer is found. This concept
does not mandate when the request should stop. We can
envision a number of approaches for solving this problem.
For example, all requested messages can use a TTL (time-
to-live) counter, which states how many times the user re-
quest can be forwarded to other WOS nodes. This approach
prevents forwarding the request over all the WOSNet but
brings about other problems as pointed out in (Annexstein
et al. 2001). Further work is needed in this area.

The bootstrap problem

The WOS system uses a generic protocol, WOSP (Babin
et al. 1998) to communicate information between nodes. A
particular instantiation of the protocol is called aversion.
When a new WOS node is added to the WOSNet, all it
knows is an initial list of WOSP versions it understands.
It knows nothing about other nodes in its neighbourhood.
The first order of business for the node is therefore to locate
other WOS nodes in its neighbourhood. We refer to this sit-
uation as thebootstrap problem. In the original description
of WOSP, the bootstrap algorithm resolved this situation as
follows. The new WOS node broadcasts a message request-
ing information about any WOS node to its local network.
If no answer is received (i.e., no WOS nodes are located on
the local network), the new WOS node, in the worst case,
broadcasts to the next network level (Kropf 1999). This
process continues until at least one WOS node is found or
until every machine on the Internet is visited (Babinet al.
1998). This approach produces a high load on the network,
and might also be impeded by firewalls.

We propose an alternative bootstrap algorithm to re-
solve these problems. In the new bootstrap algorithm, we
use a normal WOS node, which offers abootstrap service.
A node offering this service is referred to as abootstrap
node. The bootstrap service populates the warehouses of
the nodes requesting it by sending back information about
other bootstrap nodes it knows. Bootstrap nodes allow for
an isolated WOS node to enter the WOSNet. Each WOS
node must therefore have initial information about at least
one bootstrap node. It is conceivable that some web sites or
their equivalent will be devoted to providing information of
well-known bootstrap nodes.

Figure 1 illustrates how an isolated WOS node could
enter the WOSNet. When a new WOS node is being in-
stalled, it broadcasts to the local network, asking for new
WOS nodes; if there is at least one WOS node on the local
network, it will respond with a positive answer. In this case,
the isolated WOS node will know another WOS node that
is already a member of the WOSNet, and then becomes a
member of WOSNet as well. Otherwise, it sends a request

WOSNET

WOS node that offers a bootstrap service

Machine without WOS software

Normal WOS node

Figure 1:Bootstrap.

to a bootstrap node, requesting the bootstrap service. The
bootstrap node’s answer is used by the isolated WOS node
to populate its warehouses. The approach we propose here
will not flood the Internet, since we broadcast only to the
local area network, instead of broadcasting everywhere at
one time.

WAREHOUSES

Most resource management systems are built for use
in small and midsize distributed computing environ-
ments (Abdennadheret al. 2001). They are often repre-
sented by a global catalogue containing all the resources
located on the available nodes of the distributed system.
This approach cannot be applied to large distributed oper-
ating systems since the highly dynamic traffic as well as
the quickly changing structures of a large heterogeneous
system like the Internet require steady and efficient update
of such resource information. Instead of a global catalog,
WOS uses limited knowledge, kept in local warehouses
which contain all resources managed locally. Every WOS
node also maintains warehouses about remotely available
resources. The node does not keep all the information it re-
ceives. A trade-off should be found between two opposite
criteria: acquisition of new information; and control/update
of existing data entries. The first criterion guarantees that
all information requested by the local user is available with-
out accessing other warehouses, which would cause an ad-
ditional communication overhead. The second criterion en-
sures that obsolete information is deleted so as to limit the
size of the warehouse (Unger 2000). In fact, a WOS ware-
house is more than just a static database with limited stor-
age capacity. Indeed, each warehouse in the WOS must
have the ability to decide without any additional user activ-
ity which information should be:

� stored in which place in the warehouse,

� replaced or deleted,

� obtained from another warehouse and which one.

Warehouse structure

The warehouses are the central data structure in the WOS.
They achieve expressiveness and are based on a hierarchy
of attributes and values. An attribute is a category in which
an object can be classified, for example its color. A value is
the object classification within that category, for example,
red. Together, an attribute and its associated value form an
attribute-value pair or av-pair. The hierarchy of av-pairs
allows WOS nodes that provide a service to precisely de-
scribe what they provide and consumers to easily describe
what they require. Characterizing resources and services
using attributes and values has been suggested before in
other contexts (Adjie-Winotoet al. 1999) and we draw
upon previous work in this area in designing our warehouse
structure. While several complex request languages exist in
the literature, our approach, based on attributes and values,
is particularly simple. It follows a lightweight scheme and
is easy to implement even on impoverished devices such as
PDA or other small devices. We also design the warehouse
structure to be independent of the specific language used to
perform requests, so that it can also be used in the context
of other service description languages.

The structure of a warehouse is a hierarchical arrange-
ment of av-pairs, such that an av-pair is a descendent of
another av-pair in the hierarchy when it is dependent on it
(see Figure 2). There can be multiple values per attribute
and each value can in turn be refined by multiple attributes.
Each value-node in the warehouse has pointers to all the
services it describes. This allows a user to find compatible
services if the requested service is not available.

User’s request

Users make requests to identify services that fulfill their
needs. Requests are built using arrangements of attributes
and values, related by relational operators(=; <;>;�;�
; 6=), which we callav-relations. For example, av-relation
[Attribute: Price� Value: 10 dollars] would request ser-
vices that cost less than 10 dollars. A request consists of
two predicates,Pu andPc, which are combinations of av-
relations using logic operators. PredicatePu describes the
user-specific characteristics of the service requested, while
Pc corresponds to characteristics of the context in which the
request is made. PredicatesPu andPc are described using
the following grammar:

22

22

1

3 22

2 22

Country

2
1

3

Is a leaf value contain the id of the service: "Cafeteria"

Is a leaf value contain the id of the service: "Compiler C++ for Linux Red hat 6.0"

Is s leaf value contain the id of the service: "Compiler C++ for Windows"

The circle is an Attribute

The hollow circle is a Value
The linked circles are an Av-Pair

Network WOSP Version

2

Canada

Province

HEC

Building

Quebec

Nature of service

3
Floor

4th

USA

States

NY

Service

10

Service

IP Address

IRO E-Commerce
Printer

Type

C++

Version

2.0

Price

Service

Service

2.0

Service

RedHat1.0

Version

Linux

Compiler

Category

Service

Host Name Service

WOSNODE

132.204.64.75

Service

2

ROOT

Windows

Service

Figure 2: Warehouse Structure.

<predicat> ::= <expression>
[[’and’ | ’or’] <expression>] ;

<expression> ::= ’(’ <predicat> ’)’ |
’not’ <predicat> |
<av-relation>;

<av-relation> ::= attribute <op> value;
<op> ::= ’=’ |

’<=’ |
’>=’ |
’<’ |
’>’ |
’<>’ ;

Predicates Pu and Pc are used as parameters to the
request processing algorithm described below.

Processing a request

The request processing algorithm selects the answers that
best fit the user’s requested service, as expressed by Pu and
Pc. This algorithm is at the heart of the warehouse search
algorithm. It returns all characteristics corresponding to all
the services that match Pu and possibly Pc. The algorithm
first starts by searching services corresponding to Pu and
Pc. If the number of services found is larger or equal to the
number of services requested, noted q, the process stops;
this is the best case situation. Otherwise, the algorithm
removes one av-relation from Pc until it finds a sufficient
number of answers; this is the intermediate case. If the re-
quest was not fulfilled, i.e., the number of services found is
smaller than q, it continues removing av-relations from P c

until either a suitable number of services is found or until
all av-relations are removed from Pc; this latter situation is
the worst case situation.

Formally, we define the request algorithm as follows:

Algorithm 1 Request (Pu; Pc; q).

Let Pu : the selection criteria defined by the user u
Let Pc : the selection criteria representing the current con-

text c
Let q : the number of services that should meet the selec-

tion criteria
Let Sr : the set of services meeting the selection criteria
Let S : the set of all services
Let s 2 S : a service
Let P 0

c
; P 00

c
: intermediate selection criteria

Let n : number of av-relations to remove from Pc

Let AV-Rel (P) : the number of av-relations in predicate P
Let Serv (P) : the set of services matching predicate P ;

Serv (P) is defined as fs 2 S j Pg

A-Best case

Sr Serv (Pu&Pc)
If Card (Sr)� q

return Sr

End-If

B-Intermediate case

For eachn 2 f1; :::; AV-Rel (Pc)�1g
Sr Serv (Pu&P 0

c
) where

AV-Rel (P 0

c
)+n = AV-Rel (Pc) and

@P 00

c
6= P 0

c
j AV-Rel (P 0

c
) = AV-Rel (P 00

c
)

and Card (Serv (Pu&P 0

c
)) < Card (Serv

(Pu&P 00

c
))

If Card (Sr) � q

return Sr

End-If
End-For

C-Worst case

Sr Serv (Pu)
return Sr

Warehouse cooperation approach

The request processing algorithm, named hereafter Re-
quest, specifies how local warehouses are searched, but
does not indicate how the search is extended to other WOS
nodes. For that purpose, we must define two other search
algorithms, namely Locate and Bootstrap. The Locate al-
gorithm performs a request over a set of WOS nodes, noted
I , for resources specified by predicates Pu and Pc. It basi-
cally calls the request algorithm on every WOS node i 2 I .

Algorithm 2 Locate (Pu; Pc; q; I).

Let Pu : the selection criteria defined by the user u
Let Pc : the selection criteria representing the current con-

text c
Let q : the number of services that should meet the selec-

tion criteria
Let I : the set of nodes to which the request is sent
Let Request (P; P 0; q) : calls to the request algorithm

For eachi 2 I , in parallel
Submit Request (Pu; Pc; q) to node i

End-For

The Bootstrap algorithm refers to the revised bootstrap
approach presented earlier.

Algorithm 3 Bootstrap ().

Let Request (P; P 0; q) : calls to the request algorithm
Let Locate (P; P 0; q; I) : calls to the locate algorithm
Let Timeout () : waits for an arbitrary period of time
Let ValueOfAttr (S; a) : returns the set of values of at-

tribute a describing services s 2 S
Let LB : the local broadcast address
Let BN : the address of a known broadcast node
Let I : a set of Internet addresses
Let P : a predicate
Let q0 : minimal number of hosts to query

Locate (true, true, 1, fLBg)
Timeout ()
P [Attribute : IP 6= value : LocalHost]
I ValueOfAttr (Request (P; Pc; q

0), IP)
If Card (I) > 0

return
End-If
Locate (true, true, 1, fBNg)
Timeout ()

Search algorithm

The global search algorithm, named Search, is a composi-
tion of the Request, Locate, and Bootstrap algorithms.

Algorithm 4 Search (Pu; Pc; q).

Let BootstrapDone : indicates whether Bootstrap has al-
ready been called or not

Let ValueOfAttr (S; a) : returns the set of values of at-
tribute a describing services s 2 S

Let Request (P; P 0; q) : calls the request algorithm
Let Locate (P; P 0; q; I) : calls the locate algorithm
Let Bootstrap () : calls the bootstrap algorithm
Let Timeout () : waits for an arbitrary period of time
Let I; I 0 : sets of Internet addresses
Let P : a predicate
Let q0 : minimal number of hosts to query

BootstrapDone false
P [Attribute : IP 6= value : LocalHost]

A-Local request

Sr Request (Pu; Pc; q)
If Card (Sr)� q

return Sr

End-If

B-Remote request to known WOS nodes

I ValueOfAttr (Request (P; Pc; q
0), IP)

If Card (I) > 0
Locate (Pu; Pc; q; I)
Timeout ()
Sr Request (Pu; Pc; q)
If Card (Sr) � q

return Sr

End-If
End-If

C-Find new WOS nodes

I 0 ValueOfAttr (Request (P , true, q0), IP)
If Card (I 0) > 0

Locate (Pu, true, q; I 0)
Timeout ()
Sr Request (Pu; Pc; q)
return Sr

Else

D-Find at least one WOS node

If BootstrapDone = true
returnSr

End-If
BootstrapDone true
Bootstrap ()
Go To “A- Local request”

End-If

Best fit

The algorithm shown above chooses the best set of services
fulfilling the user’s request. The warehouse structure is de-
signed in a flexible way, which allows the request process-
ing algorithm to find the best fit (i.e., the services which
match the user’s request and most or all of contextual pa-
rameters). For instance, if the request is a printer (Pu =
[Attribute: service = value: printing]) and the user is cur-
rently in the HEC building (Pc = [Attribute: building =
value: HEC]), the search algorithm will first try to choose
all printers located in the HEC building [value: HEC]. If
the printing service was not offered in the HEC building,
the search algorithm would provide the user with an alter-
nate list of printing services in other buildings.

Managing resources

Whenever a WOS node receives answers from remote
nodes, or at each warehouse modification request, it needs
to update its warehouses’ content. This update process de-
termines whether information about resources should be in-
serted, updated, or even removed. The proposed warehouse
structure facilitates these manipulations. New information
is grafted to the warehouse tree structure, where appro-
priate. In order to properly manage knowledge about re-
sources (i.e., to be able to remove old information), we keep
track, for each av-pair, of its creation date, its last modifi-
cation date, and its number of access. This information en-
ables a WOS node to properly manage the limited storage
capacity allocated to it.

IMPLEMENTATION

We have started the development of a Warehouse Manager.
The manager implements the request algorithm, warehouse
resource management (warehouse update process), and the
warehouse structure. Our implementation is in Java to
take advantage of its cross-platform portability. The ware-
house structure is developed in XML; access to the ware-
house structure is performed in Java using the XML pack-
age developed by IBM (Ceponkus and Hoodbhoy 1999;
xml 2000). Figure 3 shows a partial warehouse structure
in XML.

 </Value>
 </Attribute>

 <Root>

-<?xml version = "1.0"?>
 <!DOCTYPE wos:warehouse (View source for full doctype...)>

 WOSPVersion
 - <Attribute AcN="1" CrD="23/05/2001" LMD="23/05/2001">

 -<Value AcN="1" CrD="23/05/2001" LMD="23/05/2001">
 HP-WOSP

--<Root>

-<Service> Cafeteria </Service>

Figure 3: An example representing warehouses in XML

RELATED WORK

Sharing services, the main objective of the WOS effort, is
also the goal of many other projects currently under way
at several research centers as well as in industry, among
them: JINI, INS, JXTA and SLP. JINI (Waldo 1998) han-
dles service lookup and discovery. The Service Location

Protocol (SLP) defined in IETF RFC 2608 (Guttman et al.
1998) proposes a service lookup algorithm based on multi-
cast. INS (Adjie-Winoto et al. 1999) uses a decentralized
network of resolvers to discover names and route messages.
Unlike JINI, SLP and INS, the approach proposed in the
WOS project is completely decentralized. This is also the
case with JXTA (Gong 2001) which can be completely de-
centralized, completely centralized, or a hybrid of the two.
However, JXTA does not mandate how messages are prop-
agated and does not address how to name and bind services
and resources; it can benefit from the algorithms we pro-
pose in the context of the WOS, especially the Request and
Bootstrap algorithms, and the service description approach.

CONCLUSION AND FUTURE
WORK

This paper describes the concept of searching and manag-
ing resources in warehouses for the WOS. We believe that
our proposition is a suitable approach to enhance the func-
tionality of the Web Operating System (WOS) and the capa-
bilities to find the best answer to any request for a resource.
We expect to successfully demonstrate the power of our ap-
proach.

In the future, there are many aspects of resource
lookup and management issues that we would like to in-
vestigate. In the following we list some of them:

� Define a process to limit the size of warehouses by
removing unused data according to some priority rule.

� Find a better way to resolve the problem of an isolated
WOS node.

� Use a dictionary to make compatible similar requests
or to generalize requests.

� Find a relation between the information of resources
and services. This relation can be used to provide the
user request with the greatest answers

ACKNOWLEDGEMENTS

This work was supported by the Canadian Natural Sciences
and Engineering Research Council (NSERC).

References

Abdennadher, N.; P. Kuonen; and G. Coray. 2001. “New
trends in high performance computing.” In IEEE euromicro
workshop on network computing (Jan.).

Adjie-Winoto, W.; E. Shwartz; H. Blakrishnan; and J. Lil-
ley. 1999. “The design and implementation of an inten-
tional naming system.” In 17th ACM symposium on oper-
ating systems principles (SOSP’99) (Dec.).

Annexstein, F.; K. Berman; and M. Jovanovic. 2001. “La-
tency effects on reachability in large-scale peer-to-peer net-
works.” In Thirteenth ACM symposium on parallel algo-
rithms and architectures (SPAA 2001) (Heraklion, Crete,
Greece, Jul.).

Babin, G.; P. Kropf; and H. Unger. 1998. “A two-
level communication protocol for a web operating system
(WOS).” In IEEE euromicro workshop on network comput-
ing (Västerås, Sweden, Aug.), 939–944.

Ceponkus, A. and F. Hoodbhoy. 1999. Applied XML: A
toolkit for programmers. Wiley.

Gong, L. 2001. Project JXTA: A technology overview.
(Apr.). Available at http://www.jxta.org/.

Guttman, E.; C. Perkins; J. Veizades; and M. Day.
1998. RFC 2608 : Service location protocol white pa-
per topic. IETF RFC 2608, (June). Available from
http://www.ietf.org/rfc/rfc2608.txt.

Kropf, P. 1999. “Overview of the WOS project.” In
1999 advanced simulation technologies conferences (ASTC
1999) (San Diego, CA, USA, Apr.), 939–944.

Unger, H. 2000. “Distributed resource location man-
agement in the web operating system.” In High perfo-
mance computing 2000 (HPC 2000) (Washington, DC,
USA, Apr.).

Waldo, J. 1998. Jini technology. Sun Microsystems, Inc
(June). Available at http://www.sun.com/products/jini.

2000. Extensible markup language. Available from
http://www.w3.org.

	reference: Simon Khoury, Peter Kropf, and Gilbert Babin. "Resource Warehouses: a Distributed Information Management Infrastructure." in High Performance Computing Symposium 2002 (HPC 2002). April 2002. Submitted.

