Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

WOS: an Internet Computing Environment

Peter Kropf* , Herwig Unger! and Gilbert Babin?

*Dép. d’informatique et de
recherche opéprationelle
Université de Montréal

Montréal, Canada H3C 3J7
kropf@iro.umontreal.ca

f Fachbereich Informatik
Universitat Rostock
Rostock, Germany

hunger@informatik.uni-rostock.de

Abstract

Given the current development of the Internet, the Web, mobile communications and
services, we are clearly heading towards an era of widely integrated ubiquitous services
sharing some kind of global operating system. This article describes the idea, the objectives
and the current state of the development of the WOS-project. The Web Operating System
(WOS™) consists of a series of versioned servers where each one can offer different services,
themselves versioned. Each node can act as a server or a client. A common protocol, itself
versioned, is used for communication among WOS nodes. Requests for services can be
passed on to other servers as appropriate. The WOS is defined by the combined actions of
different nodes.

1 Introduction

1.1 The Context

With the emergence of widespread computing and telecommunication networks, an explosion of
networked and mobile computing is taking place; in turn there is a permanent growth in areas
such as electronic-commerce, multi-media applications, or large-scale high-performance scalable
distributed computing. These developments lead to the conclusion that the global computing
infrastructure is in a permanent process of evolution.

Because of the rapid changes in the underlying infrastructure, it is clear that component-
based systems are best suited for large-scale distributed systems, since, as needs change, com-
ponents can be replaced or adapted more easily than can entire systems. However, components
can themselves be programmed to act differently according to the context in which they are
immersed; we call this versioned programming, and we assume that as a context evolves, the
collaboration between components may change and evolve. We call these evolving contexts and
collaborating components — along with their interactions — communities. Programming models

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

and techniques based on the above principles require an infrastructure that supports versioned
dynamic and adaptive resource management and communication between versioned components
can provide answers to these challenges. The goal of the proposed Web Operating System (WOS)
initiative is precisely to create such an enabling infrastructure for distributed applications. In
a technical sense this middleware can be viewed as a Network Operating System for ubiqui-
tous computing that spans the higher layers on top of the enabling communication network
infrastructure to provide to the applications and users eased access to the advanced network
services.

Electronic commerce, communication and multimedia services, high performance large-scale
cooperative distributed computing, and ubiquitous computing are among today’s most relevant
wide-area distributed systems. Therefore, the programming models, and distributed computing
infrastructure investigated should specifically target these applications.

1.2 The Web Operating System

The design Web Operating System (WOS) approach for global computing relies on the novel
concept of dynamically defined or versioned communities of components (software and hard-
ware). For example, a community of nodes acting as a parallel computer may now be defined
by searching the node’s information warehouses (or catalogs) for the resources necessary to de-
fine the virtual parallel computer. This will thus define a new context of computation. To deal
with change, generalized software configuration techniques, based on a demand-driven technique,
called eduction, are used for the WOS. The kernel of a WOS node is a general eductive engine,
a reactive system responding to requests from users or other eductive engines using the ware-
houses’ information to provide the necessary components for fulfilling service requests. This
approach allows interaction with many different warehouses, each offering different versions of
services, resource-management techniques, applications, platforms, hardware, and so on. Un-
doubtedly this approach will help to overcome restrictions of other middleware structures such as
CORBA, Java/RMI (and Jini), Globus or Legion, which require user configuration and complete
resource catalogs and restrict change to and dynamism to a controlled deployment of changes in
components’ functionalities.

The concept of the WOS calls for a generic communication framework as its central com-
ponent instead of a central server (or a fixed set of servers) on which clients rely. Therefore a
communication layer supporting versioned protocols is needed to support communications within
a community considering the negotiation of appropriate protocol selection, communication set-
up, QoS and security issues.

1.3 Communities in computing

Networked or distributed computing means that multiple components, arising from several
sources, will be put together in a single context; furthermore, objects will not necessarily re-
main in a given context, and may migrate to other contexts. Intuitively, these contexts may
be understood as supporting the creation of communities. Different communities may agree to
trade, meet, or discuss, depending on the communication protocols that they can agree upon.

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

For instance, human or software agents trading and brokering in electronic marketplaces may
form communities interaction or common interests. Other examples of communities are Internet
chat-rooms or dynamic intra- and extranets of large companies. We believe that this community
concept exhibits a potentially very rich model for ubiquitous computing. This concept of evolu-
tive communities might be formally defined and analyzed as a generalization of the agent oriented
programming (AOP) while applying the intensional programming paradigm. Intensional pro-
grams are programs that are immersed in an implicit environment and allow the manipulation
of versions of identifiers and functions. The intensional language ISE (Intensional Sequential
Evaluator) is a candidate to experimentally include support for communities [39]. The required
infrastructure to support versioned resource management and communication between versioned
objects will be provided by the WOS.

1.4 Related Work

There are several approaches to integrate the computational resources available over the Internet
into a global computing resource. The closest approach to the WOS is the Jini architecture
proposed by SUN Microsystems [9]. Jini allows one to build federations of nodes or distributed
objects offering different services each relying on its own service protocol. Lookup services
provide location and discovery functions. These lookup services, however, require the knowledge
of all lookup attributes. Moreover, it must be exactly specified what is looked for, which means
that only attributes to be exactly matched may be specified. For example, a search for the
nearest printer cannot be realized. The WOS approach is qualitatively different and more general
in that federations, i.e. subsets of WOS nodes, defining a specific environment and context
are dynamically and autonomously created. This is achieved with versioning and powerful
lookup/discovery protocols and generalized service communication protocols. Every service is
versioned in the WOS, and a suitable version is selected according to a 'best fit’ strategy. This
allows the implementation of smart lookup services where attributes need not to be exactly
matched.

Other efforts to exploit distributed resources for wide-area computing include Linda, PVM,
MPI, Netsolve [5], Globe [11], WebOS [10], Legion [8] and Globus [7]. In contrast to the WOS
approach, most of these systems require login privileges on the participating machines, or require
operating system or compiler modifications. They usually also require architecture specific
binaries. The use of Java addresses the latter issue in a number of projects including Atlas [1],
ParaWeb [3], Charlotte [2], Javelin [6] and Popcorn [4]. Those projects aim mostly to provide
Java oriented programming models for Internet-based parallel computing. Our approach is
orthogonal to these proposals in that Java oriented programming models could be integrated
into the WOS through gateway interfaces. But the WOS is different in that it does not require
any global centralized catalog of resources as it is for example necessary in Javelin, ParaWeb,
Atlas or Globus.

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

2 Node Structure

2.1 General Characteristics

The entire WOS is written in Java. This programming language was chosen to achieve a highly
portable system. Because the WOS makes heavily use of the communication capabilities of the
operating systems, Java was the best choice in view of its rich features for communication and
security.

A WOS communication layer [14] was created to optimize the communication speed while
saving resources, e.g. bandwidth, at the same time. Each WOSNode operates as a server as
well as a client. The WOSNet consists of a series of versioned servers or nodes [15] which can
provide a set of services and resources. There are no central catalogs of resources in the WOSNet.
Each WOSNode stores information about other nodes locally in its own resource warehouse [30].
That means, no machine has a global information about all other nodes in the WOSNet. The
information stored in the warehouses will be updated each time the node finds other, previously
unknown nodes. Using such a kind of decentral resource warehouses, the system achieves a high
flexibility and avoids some of the bottle necks of systems with a central information management.

The structure of a WOSNode is shown in figurel. The left side of this figure shows the
server, and right side represents the client part of each WOSNode.

e

User Profiles

Execution
Control

User
Resource
Control

Search
Evaluation
3 _‘—/
g

Eduction & Search Engine

\Warehouse
—

Network|

WOSP! WOSRP

T
avw
dUSOM /dSOM

Job
Control

(hardware and software)

Local Host:

CPU Time
Memory Access
Services

List of Shared
Resources

20U JaSN
[sinsay Yyoreas 3

Remote
Resource
Control

Application Programming Interface

WOSP/ WOSRP

Host Machine Manager User Manager

dY¥SOM /dSOM

Eduction & Search Engine

Warehouse

Figure 1: Structure of a WOSNode

For the description of services in the WOS Profiles are used. Profiles describing resources
with a list of key-value pairs. Each pair defines a special feature of a resource. A printer for
instance, has a special type (ink, laser etc.), is able to print black and white or color and can
handle Postscript files. Each resource has a corresponding access-object describing its methods,
for a printer e.g. self test, economy mode etc. That means that the user does not need to use
the commandline anymore. Restrictions which belong to the profiles are described using the
same data structure. It is possible to define new forms of restrictions.

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

With the prototype version 0.4 of the WOS comes a profile editor to create those profiles
and to store them in the so called profile warehouse. Some predefined types like integer, domain
etc. are available to store the values of the features. Further types can easily be created and
dynamically loaded into the system.

Restrictions are store in a separate warehouse to allow more than one access schema for one
profile, e.g. for different user groups. Before a user can get access to a profile, he has to fill a
form with the restrictions set for this profile. This form is sent to the server together with the
request. Then the server can check the restrictions and if the content of the form is correct, the
server can perform the requested action.

3 WAOS prototypes

3.1 Overview of WOS Releases

In this section an overview of all WOS releases and its main features is given. Table 1 shows
also the release dates and gives an outlook of the coming release 1.0 of the WOS.

Table 1: The history of the WOS releases and its main features.
‘ WOS version ‘ Release Date ‘ Features ‘

0.1 Sep 1998 RCU, RRCU, result propagation via Netscape, Altavista
search client, HTML based request forms, implemented in
C

0.1.7 Nov 1998 bug fixes, speed optimizations

0.2 Jun 1999 Communication layer vI, implemented in Java, GUI with
Java, first services

0.4 Dec 1999 Communication layer vII, search chains, warehouses,
profiles, profile editor, services

1.0 Sep 2000 API, bug fixes for WOS kernel, kernel interfaces, Message
Chains, security, Job Control, services

In the following, the current WOS release is described.

3.2 Description of the current Version 0.4

The version 0.4 is the first version with resource search mechanism and a profile based resource
administration. It consists of four major components:

e graphical user interface
e profiles, profile editor

e RRCU/RCU for the resource management

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

e communication layer (WOSRP/WOSP)

The communication layer and its API are described in section 3.3.

The User Interface is subdivided in three parts, the profile editor, the resource editor and
the request menu. As mentioned before, each resource is described through a profile. The Profile
Editor helps the user to generate profiles of resources he wants to make available for other users.
He has to define descriptive features of these resources, the object which the remote user needs
to access and the parameters for this object. All profiles are stored in the local profile warehouse.
In the resource warehouse (see figure?2) the restrictions going for each profile are stored. The
user can combine more than one restriction set with one resource. These restrictions will be
checked before an other user can access the resources. The third part of the GUI, the request

| Edit the Resource Warehouse | Edit the Profile warehouse | Access the WOS(tm) — Net

Warehouse Resources

[TEST | Hi-restriction |
Related Resource

Add " Remove || Change Key || set essential || set not essential |

| HOSTINFO || > | "Domains]

|*.*.*.* | Any

dialog
warehouse Profiles

[HOSTINFO | e

Access Object | add || Remove " Change Key || setessen! E lPIeaseenteranewkey
Sumething| |

Atnlin nf cow
|

| 0K || Cam:el|

Keys

I
i[HI—HCTION |

fﬂctiun rDescriptiun rParameter
Please enter a description for this action

{HI-ACTION

|Information about a WOS noede

Figure 2: GUI of WOS version 0.4: The warehouse editor, profiles and actions.

menu, provides an easy to use interface to the resources of the WOSNet (figure 3). The user can
access all resources stored in the local warehouse and also initiate a search for new resources an
update the warehouse.

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

| Edit the Resource Warehouse | Edit the Profile Warehouse | Access the WOS({tm) — Net

& (im)Resource Control Unit —- Output window /@&
w05t Resource Search

ladding 127.0.0.1 @ =T

Profiles

[Trying to send 1 chains .. 127.0.0.1 |
Search chains are sent, waiting for answers now ., = S thi
| weill weait for 30000 milliseconds from now on ., | Access Object r ome IH!EI|

|Received Answer, parsing it new o] | Yalue of something

Message was send from 127.0.0.1 and is valid
Il nowe update my local resource list

| will wait for 27656 milliseconds from now on .,
| now stop waiting for answers, 9o back tu Ul

@ € i orwangaead) RESOUrCE Access Window
Run Restrictions

[HI-ACTION |

rDescriptiun rParameter
Hi-acTion This is the description for the requested action

[Infermation about a WOS nede

Hl—restril:tiun|
Domains |

[127.0.01

Figure 3: GUI of WOS version 0.4: Accessing the WOSNet.

The Resource Control Unit (RCU) accepts service requests from the user interface and
contacts several known warehouses to find a WOSNode, where the requested service can be
executed. First, the local warehouse is contacted, then other known warehouses in the WOSNet.
If no service was found, a search for the requested service will be started. If an answer was found,
the RCU asks for the service execution and returns the results to the user. After successful
execution, the local warehouses are updated.

The Remote Resource Control Unit (RRCU) accepts service requests from other WOSNodes
and examines, whether the execution is allowed or not. Therefore, the resource warehouse is
ask. The RRCU transmits the answer to the client-side RCU. The service execution itself is
also managed by the RRCU, which contacts the resource warehouse a second time to verify the

access rights. After that, the service is executed and the results are passed to the client-side
RCU.

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

3.3 The Communication Layer

For all communication which comes up to realize a service request, Triplets [18] are used in the
WOS communication interface. The communication in the WOS provides two possible modes —
the connectionless mode and the connection-oriented mode. In order to ensure an efficient
search, the connectionless mode is used for the search. That means that there will be no WOSP
connection established to sent a request. However, a TCP communication mode is used for a
save delivery on the lower communication layers.

The WOS communication layer uses a two-level approach [14]. The first layer (WOSRP)
offers discovery/location services and the second one (WOSP) is a generic service protocol defined
through a generic grammar. Any instantiation of WOSP is then considered as one version of
the protocol. Services which are available in the WOSNet can exist in many different versions.
In addition, the WOS protocols itself can be versioned. A two-level protocol is required for the
WOS nodes to be able to communicate. On one hand, a protocol must allow the selection of an
appropriate version of WOS resources, the WOS Resource Protocol (WOSRP), and on the other
hand another protocol, the WOS Protocol (WOSP), is needed to locate and use distributed
resources over the Web. A single protocol is not sufficient. A suitable version of the WOS
server must be identified before any resources may be accessed. Therefore, each client manages
a warehouse. This warehouse also contains information on available other WOS servers and
their versions. Once a suitable version and server are identified, a richer language is needed to
request services. Therefore, in the WOS are two protocols defined: WOSRP to identify suitable
WOS servers, and WOSP to submit service requests.

WOSRP is an application-level protocol which is assumed to be used over IP networks. The
rationale behind WOSRP is to provide mechanisms for WOS nodes to exchange information
about WOSP versions they support. It is also used to obtain information about other WOS
nodes that understand specific WOSP versions. WOSRP has to be simple and flexible. Any
version of WOSRP should be fully downwards compatible. Each machine wishing to join the
WOSNet may do so without worrying about:

e which version of WOSRP it understands,
e having to gain prior knowledge of other WOS servers;

e any administrative overhead.

A WOS node may “speak” a certain version of the WOS protocol, which means that it can
interact with other nodes using that version. A WOS node may also “know” a version of the
WOS protocol. That means, that even if cannot interact using that version, it can refer a WOS
node to other WOS nodes which might have this capability.

WOSRP also serves to establish connections between WOS nodes. A WOSP message may
be encapsulated in a WOSRP message. This way, a generic server may receive all the requests
and select the appropriate version to process them.

The WOSP is used if a service should be executed, to pass the results and for the search in
the WOSNet. It allows three types of commands:

8

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

1. Setup commands are used to change the execution parameters of a WOS node.
2. Execution commands allow a WOS client to use resources from another node.

3. Query commands are used by a WOS client to interrogate another WOS node’s warehouse.

The query command is used for the search request messages. A query command can have
data and meta-data attached to it. This is sufficient for the search algorithms and the use of
WOSRP in the lower protocol level avoids version conflicts during a WOS search. An example
of the syntax of a WOSP version is given in figure 9 and the API of the communication layer is
described in detail in [31].

4 WQOS services and versions

As described in section 3.2 the system services of the WOS allow to setup services and to make
resources available to a WOSNet through the profile editor. A number of additional services
and functions have been developed which are briefly described in the following sections.

4.1 WOSForward service

The location of services in a WOSNet is based on the mechanism of multiple sequential chains [41].
Based on the knowledge of the WOSNet, a node searching for a service is building lists of nodes
to be visited. These lists define sequences of nodes to visit along disjunct paths. The search
may thus be performed in parallel along these paths. Theoretical as well as experimental inves-
tigations have shown the efficiency of this mechanism [19]. The WOSForward service exploits
the principle of multiple search chains to transfer data from a source node to a target node in
the WOSNet in parallel along disjunct paths as shown in figure 4.

bn
)
c
S
=
source node b, c target node
(standard path) bg K
‘ b near1 ‘ b far ‘ b near2 ‘

Figure 4: Communication along disjunct paths.

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

The speedup achieved with this service depends on the available bandwidth in the local area
(bnear), the bandwidth b; available on the Internet, and the amount of data to be transfered.
In general, we obtain a better speedup, if the bandwidth in the local area is large and if the
combined bandwidth of all the disjunct paths in the Internet is large as compared to one single
transfer channel. The data D to be transfer is divided into chunks of data d; which are transfer
along the different paths. It is clear that those chunks may not become too small, otherwise the
introduced overhead of this method will neutralize the speedup. Figures 5 and 6 show the results
obtained with a data transfer between two machines in Europe and North America respectively
using two distinct paths.

goo | Onepath —
Two paths -~ —

700
limenau, Germany Dhear = 15 bgy,
WOS-repeater 600 |
g 500)
g 400 -
300
Quebec, Canada 200 |
188.1.166.5 Target node
Rostock, Germany 100
Source node 0
| brean | Brar Prearz 0 10 20 30 40 50 60 70
File size (MB)
Figure 5: Experimental setup for the commu- Figure 6: Transmission times for one path and
nication with two disjunct paths. two disjunct paths.

4.2 CORBA - WOS integration

WOS and CORBA both achieve interoperability through a well defined protocol. CORBA makes
use of the Internet Inter-ORB protocol (IIOP) to exchange General Inter-ORB protocol (GIOP)
messages over a TCP/IP network. The GIOP uses then the Common Data Representation
(CDR) to map IDL types onto a raw, networked message representation. The WOS in turn
uses the WOSRP/WOSP protocol and the principle of warehouses to store information about
services. The profile warehouse allows to store service profiles consisting of a name, and an
access object representing the executable to invoke the service. The access object is identified
by a key and uses a set of input and output parameters for the execution. To allow the two
systems simultaneously, a (protocol)-bridge has been developed and implemented in Java [33].
The triplet [CORBA module, interface name, parameters| is mapped onto [WOS profile name,
access object key, access object parameters| allowing to access the service from within both
systems.

A generic WOSAdapter as shown in figure 7 provides a CORBA client with the usual view
of an ordinary CORBA service, when accessing a WOS based service.

A specific version of the RRCU (Remote Resource Control Unit) of the WOS allows a
WOSNode to directly access a CORBA service through the CORBA API. The invocation of a

10

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

CORBA service (instead of a WOS resource) is completely transparent for the client as it is the
case for the generic WOSAdapter. Figure 8 describes how a CORBA service is invoked from
within the WOS.

CORBA WOS WOSClient Side
Client Service

I

X WOS Server Side
I
|
I
|
|
:
|

ORSB Interface WOSP Interface Parameters ! [coreA Adapter | (CORBA IR

i
I
|
|
I
|
|
I
|
|
I
|
|
I

CORBA Server Side

|
|
1
1

ORB

Bind

B
§' Interface Description
14

CORBA Serviceg

Interface Name

110P
Resource Profile
110P WOS - WOSP T oS
_____ ‘ € Adente” H RCU_ | [rru]
WOosP apter — D

Resource Name

1
[
1
1
[
1
1
[
1
1
CORBA Service ? l
1
1
[
1
1
[
1
1
1
1
1
[

| Network | ‘WOSNet

Figure 7: WOSAdapter in CORBA - generic Figure 8: CORBA service invocation from
server. within the WOS.

4.3 HPC - WOS

Tools for wide area high performance computing usually require all the computing resources to
be known in advance. Often, this information is even directly compiled into the parallel applica-
tions. The computing resources must therefore be exactly configured to match the applications’
requirements. This configuration task may involve tedious setup procedures or scripts requiring
login privileges, exact knowledge of the resource locations etc.

A version of WOSP, called HPC-WOSP, has been defined to ease this task [38]. It allows to
automatically configure and execute HPC applications in the WOS environment, i.e. on resources
of a WOSNet. Specifically, it supports the communication requirements for HPC applications,
which are:

Configuration stage: the location of suitable WOS nodes with the appropriate set of resources
(hardware and software) for an application and the reservation of those resources.
Execution stage: the code distribution and launch of the application.
The figure 9 shows the syntax of the HPC-WOSP protocol version. The information about
the properties of the resources and the requirements of the application are again specified with the

help of profiles and are kept in the corresponding warehouses. The HPC-WOS implementation
has been successfully tested for large MPI and PVM applications.

11

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

(O e _paraier {5 H_commana_ia | GRE>{5]
C
o@@ S5O OLRE> }

0@@ D (O-CRLE-CO s R s]

<o e D> G YO (@ O @D D@D]

(ED-Ceply 10 >~CCRLED(site JCERLED~(T D s FCERLIE s |

C
@ D-Teply_to_msg><CCRLE> reply_toid |RCERLED(s {CERLED s |

reply_to_id H command_id @
G 5

' reserved .

rejected

C

value

e O-CRE-CD
CERLE>-C DA s R s]

Canswep>-CCRLED

@ <z raaia>{= H e }<Gip> 5]

O <wos >G> Camen) (i - O @D D D]

O raan— [{ @ &3]
sz D> e YO ()~ O @D D @D]
e@@o@

Figure 9: Syntax of the HPC-WOS version

5 Conclusion and Future Work

The Web Operating System (WOS) is at its current state of implementation useful to demon-
strate the possibilities of this approach and to test its major functionality. The lack of security
mechanisms and clearly defined programming interfaces foils an application of the WOS in a
production environment. However, a security system based on automatic trust evaluation has
been designed [26, 36] and is currently being implemented. The WOS version 1.0 is scheduled
to be released in the last quarter of the year 2000. It will include the yet missing components
such as the security module, a complete API and a refined job control module. The experience
gained so far with the WOS system and services clearly indicate its potential for future ubiqui-
tous computing, because any device can be a WOSNode and any service can be implemented.
The concept of versions applied throughout the entire WOS system allows for the necessary
flexibility required by ubiquitous computing. The section WOS References gives an overview of
WOS related publications.

12

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

References

[1] J. Baldeschwieler, R. Blumofe, and E. Brewe. ATLAS: An Infrastructure for Global Com-
puting. In 7th ACM SIGOPS European Workshop on System Support for Worldwide Ap-
plications, 1996.

[2] A. Baratloo, M. Karaul, Z. Kedem, and P. Wykoff. Charlotte: Metacomputing on the Web.
In 9th Conference on Parallel and Distributed Systems, 1996.

[3] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. Towards World-Wide Supercomputing. In
ACM SIGOPS European Workshop on System Support for Worldwide Applications, 1996.

[4] N. Camiel, S. London, N. Nisan, and O. Regev. The POPCORN Project: Distributed
Computing over the Internet in Java. In 6th International World Wide Web Conference,
1997.

[5] H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Sci-
ence Problems. International Journal of Supercomputer Applications and High Performance
Computing, 3(11):212-223, 1997.

[6] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D. Wu.
Javelin: Internet-Based Parallel Computing Using Java. In ACM Workshop on Java for
Science and Engineering Computation, 1997.

[7] L. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Supercom-
puter Applications, 2(11):115-128, 1997.

[8] A.S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds. A Synopsis
of the Legion Project. Technical Report CS-94-20, University of Virginia, 1994.

[9] Sun Microsystems Inc. Jini Specification. www.javasoft.com/products/jini/specs, 1999.

[10] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. Eastham, and C. Yoshikawa.
WebOS: Operating System Services for Wide Area Applications. In Seventh IEEE Sympo-
stum on High Performance Distributed Systems, Chicago, IL., USA, 1998.

[11] M. van Steen, P. Homburg, and A. S. Tanenbaum. The Architectural Design of Globe: A
Wide-Area Distributed System. Technical Report IR-422, Vrije Universiteit, Amsterdam,
1997.

WOS References

[12] S. B. Lamine, J. Plaice, and P. Kropf. Problems of Computing on the Web. In SCS A.
Tentner, editor, High Performance Computing Symposium, pages 296-301, Atlanta, GA,
1997.

[13] P. Kropf, J. Plaice, and H. Unger. Towards a Web Operating System. In WebNet 97,
Toronto, 1997.

13

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

G. Babin, P. Kropf, and H. Unger. A Two-Level Communication Protocol for a Web
Operating System (WOS). In IEEE 24th Euromicro Workshop on Network Computing,
pages 934-944, Sweden, 1998.

S. B. Lamine and J. Plaice. Simultaneous Multiple Versions: The Key to the WOS. In
Distributed Computing on the Web (DCW’98), pages 122-128, Rostock, Germany, 1998.

G. Babin. Requirements for the Implementation of the WOS. In Distributed Computing on
the Web (DCW’98), pages 129-133, Rostock, Germany, 1998.

H. Unger and P. Kropf. An Approach for the Resource Scheduling in the WOS . In
Distributed Computing on the Web (DCW’98), pages 134-140, Rostock, Germany, 1998.

M. Wulft, G. Babin, P. Kropf, and Q. Zhong. Communication in the WOS . Technical
report, PARADIS Laboratory, Université Laval Canada, 1998.

H. Unger, P. Kropf, G. Babin, and T. Bohme. Simulation of Search and Distribution
Methods for Jobs in a Web Operating System (WOS). In SCS A. Tentner, editor, High
Performance Computing 1998 ASTC, pages 253-259, Boston, MA, 1998.

T. Bohme and H. Unger. Search in the WOSNet. In Distributed Computing on the Web
(DCW’98), pages 141-142, Rostock, Germany, 1998.

P. Kropf. Overview of the WOS Project. In SCS A. Tentner, editor, High Performance
Computing 1999 ASTC, San Diego, CA, 1999.

J. Plaice and P. Kropf. WOS Communities — Interactions and Relations Between Entities
in Distributed Systems. In Distributed Computing on the Web (DCW’99), pages 163-167,
Rostock, Germany, 1999.

H. Coltzau, H. Unger, and D. Berg. Implementation of a WOS-Prototype. In Distributed
Computing on the Web (DCW’99), Rostock, Germany, 1999.

I. Banicescu and H. Unger. Running Scientific Computations in a Web Operating System
Environment. In SCS A. Tentner, editor, High Performance Computing 1999 (ASTC), San
Diego, CA, 1999.

M. Wulff. Implementation of the Service Search in the WOSNet. In Distributed Computing
on the Web (DCW’99), Rostock, Germany, 1999.

H. Unger. A New Security Mechanism for the Use in Large Distributed Systems. In SCS A.
Tentner, editor, High Performance Computing 1999 (ASTC), San Diego, CA, 1999.

S. A. Hopper, A. R. Mikler, P. Tarau, F. Chen, and H. Unger. Mobile Agent Based File Sys-
tem for the WOS: An Overview. In SCS A. Tentner, editor, High Performance Computing
1999 (ASTC), San Diego, CA, 1999.

S. Schubiger, O. Krone, and B. Hirsbrunner. WebComs: Transactions as Object-Flow
Networks for the WOS. In Distributed Computing on the Web (DCW’99), pages 31-38,
Rostock, Germany, 1999.

14

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

O. Krone and S. Schubiger. WebRes: Towards a Web Operating System. In 11. Fachtagung
Kommunikation in Verteilten Systemen (KIVS ’99), Darmstadt, Germany, 1999.

H. Unger. The Adaptive Warehouse Concept for the Resource Management in the WOS.
In Distributed Computing on the Web (DCW’99), Rostock, Germany, 1999.

G. Babin, H. Coltzau, M. Wulff, and S. Ruel. Application Programming Interface for
WOSP/WOSRP. In P. Kropf et al., editor, Distributed Communities on the Web 2000,
LNCS 1830, pages 110-121. Springer, 2000.

S.A. Hopper, A. Mikler, and J. Mayes. Design and Implementation of a Distributed Agent
Delivery System. In P. Kropf et al., editor, Distributed Communities on the Web 2000,
LNCS 1830, pages 192-201. Springer, 2000.

O. Krone and A. Josef. Using Corba in the Web Operating System. In P. Kropf et al.,
editor, Distributed Communities on the Web 2000, LNCS 1830, pages 133-141. Springer,
2000.

O. Krone and A. Josef. Integrating CORBA into the Web Operating Systeem: First Ex-
periences. In SCS A. Tentner, editor, High Performance Computing 2000 (ASTC), pages
207-212, 2000.

M. Wulff and H. Unger. Message Chains as a New Form of Active Communication in the
WOSNet. In SCS A. Tentner, editor, High Performance Computing 2000 (ASTC), pages
219-224, 2000.

H. Unger. Resource Managment in Large Distributed Systems. Habilitation thesis, Univer-
sity of Rostock, Germany, 2000. In German: Untersuchungen zum Ressourcenmanagement
in grossen verteilten Systemen.

P. Kuonen, G. Babin, N. Abdennadher, and P-J. Cagnard. Intensional High Performance
Computing. In P. Kropf et al., editor, Distributed Communities on the Web 2000, LNCS
1830, pages 161-170. Springer, 2000.

N. Abdennadher, G. Babin, P. Kropf, and P. Kuonen. A Dynamically Configurable Envi-
ronment for High Performance Computing. In SCS A. Tentner, editor, High Performance
Computing 2000 (ASTC), pages 236-241, 2000.

J. Plaice, P. Svoboda, and A. Alammar. Building Intensional Communities Using Shared
Contexts. In P. Kropf et al., editor, Distributed Communities on the Web 2000, LNCS 1830,
pages 55—64. Springer, 2000.

J. Plaice and P. Kropf. Intensional Communities. In Intensional Programming II, Singapore,
2000. World Scientific Press.

M. Wulff, P. Kropf, and H. Unger. Message Chains and Disjunct Path for Increasing
Communication Performance in Large Networks. In P. Kropf et al., editor, Distributed
Communities on the Web 2000, LNCS 1830, pages 123-132. Springer, 2000.

15

Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, Interne
Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

[42] N. Abdennadher, G. Babin, and P. Kuonen. Combining Metacomputing and High Perfor-
mance Computing. In 2000 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’2000), Las Vegas, Nevada, 2000.

[43] S. Schubiger. A Resource Classification System for the WOS. In P. Kropf et al., editor,
Distributed Communities on the Web 2000, LNCS 1830, pages 74-81. Springer, 2000.

[44] H. Unger. Distributed Resource Location Management in the Web Operating System. In
SCS A. Tentner, editor, High Performance Computing 2000 (ASTC), pages 213-218, 2000.

16

	reference: Peter Kropf, Herwig Unger, and Gilbert Babin. "WOS: an Internet Computing Environment." in Workshop on Ubiquitous Computing, International Conference on Parallel Architectures and Compilation Techniques. Philadelphia, PA, USA. October 2000. pp. 14-22.

