Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

Intensional High Performance Computing

Pierre Kuonen!, Gilbert Babin?, Nabil Abdennadher!, and Paul-Jean Cagnard!

1 GRIP Research Group, Département d’informatique
Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
{Pierre.Kuonen, Nabil.Abdennadher, Paul-Jean.Cagnard}Qepfl.ch
2 pARADIS Laboratory, Département d’informatique
Université Laval, Québec, Canada G1K 7P4
babin@ift.ulaval.ca

Abstract. In this paper, we describe how a metacomputing environ-
ment called Web Operating System (WOS™) together with a new pro-
gramming paradigm called ParCel-2 may be used to exploit available
computing resources on a parallel/distributed environment. The main
feature of the WOS™ is to manage contexts of execution (hardware,
software, time, etc). The WOS™ fulfills users’ requests while consider-
ing all possible execution contexts in order to provide the application
with the best resources available. In the model presented, we assume
that parallel/distributed HPC applications are written using ParCel-2.
The well defined computing model as well as the hierarchical syntactic
structure of ParCeL-2 allow for an automatic adaptation, at execution
time, of the size of the different parallel processes, depending on the con-
text of execution. We have called this approach, derived from intensional
logic : intensional High Performance Computing (iHPC).

1 Introduction

Until recently, the world of High Performance Computing (HPC) was mainly
involved in solving huge numeric problems using matrix calculation (number-
crunching). This fact may be attributed to two factors. First, traditional vector
and parallel supercomputers were very expensive and especially well designed
for the resolution of large numerical problems. Second, most potential users,
having large enough budget for buying such machines, were people dealing with
linear algebra problems as found in aeronautics, spatial and military industry,
chemistry and fluid dynamics. As a consequence, the state-of-the-art in HPC has
mainly relied on FORTRAN, inducing poor data structures and imposing poor
software engineering approaches in the design of long programs. Application
programmers were working in close relation with users of these applications and
the main execution paradigm was the batch mode.

Since the beginning of the nineties, distributed computing is emerging and
prototypes of parallel applications running on less costly local networks of work-
stations appeared. These applications were first realized using locally developed
communication software and more recently using de facto standards such as
the Parallel Virtual Machine (PVM) standard, thus popularising the message

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

162 P. Kuonen, G. Babin, N. Abdennadher, and P.-J. Cagnard

passing parallel programming paradigm. This led to the now well established
Message Passing Interface (MPI) standard. Following the development of Local
Area Networks (LAN) during the eighties, Internet technology has popularized
Wide Area Networks (WAN). Message passing programming, first localized on
LAN and on massively parallel computers, is now moving to WAN. Habits of
users are rapidly changing from a program centric vision to a service centric
vision. Future users will require the realization of a given service in the most
efficient environment presently available to them through a WAN.

This evolution in the user’s needs has led to the creation of a new high
performance computing paradigm called metacomputing [Buyya 99]. A major
consequence of the emergence of this new paradigm in the world of HPC is the
urgent need for new software environments to develop and execute HPC ap-
plications. Such environments should give access to existing and new parallel
programming tools and allow for an efficient transparent remote execution of
wide-area distributed HPC applications. Unfortunately, most of current tools
available for High Performance Parallel/Distributed computing require that all
the computing nodes be known in advance; each computer involved in the exe-
cution must be properly configured and the execution environment must usually
know where the different processes of the parallel program will be executed.
In this paper, we will show how a new parallel programming paradigm, called
ParCel-2 (Section 2), together with the WOS™ metacomputing environment
(Section 3) leads to the concept of intensional HPC' (Sections 4 and 5). We will
show that intensional HPC (iHPC) is an elegant and powerful concept for the
realization of HPC applications which are able, at execution time, to automati-
cally adapt themselves to the context of the execution. This capability is of the
highest importance for allowing HPC applications to benefit from the computing
capacity offered by metacomputing environments since these environments are
usually very dynamic and unstable.

2 ParCel-2: a New Parallel and Distributed Programming
Paradigm

More than a new parallel programming language, ParCel-2 is a new parallel and
distributed programming paradigm. Its objective is to provide a minimal set
of new concepts to be added to a classical imperative programming language in
order to allow an “intuitive” expression as well as an efficient execution of parallel
and distributed applications. ParCelL-2 basically provides two main concepts:

— a well defined parallel computing model;
— a hierarchical syntactic structure.

These two new concepts can be integrated in any existing sequential imperative
language.

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

Intensional High Performance Computing 163

2.1 The ParCel-2 Computing Model

The computing model of ParCeL-2 is inspired from the Bulk Synchronous Parallel
(BSP) model [Valiant 90]. In BSP, a parallel program consists of a set of parallel
processes each executing a sequence of supersteps. A superstep is composed of
two phases: a computation phase and a communication phase. Supersteps are
separated by synchronization barriers. The execution of a program using the
BSP model can be represented as in Fig. 1.

During the computation phase of a superstep, a process executes computa-
tions which only manipulate data local to this process. These data can be local
variables or data that have been received from another process. A process can
send data to other processes in the course of a computation phase but the ac-
tual transmission of data happens at the end of each superstep. No data are
exchanged during computation phases; this means that data sent from a given
process P; to another process P, during superstep s, will only be available to
process P, at the beginning of the next superstep, that is superstep s + 1. It
can be observed that this computing model is intrinsically a distributed memory
Multiple Instruction Multiple Data model (MIMD-DM).

ParCel-2 extends the BSP model with several new features. The most im-
portant ones are:

— The specification of the communications allowed between processes (links).
These allowed communications are typed and directed links;

— A more complex synchronisation mechanism between processes. As opposed,
to the BSP definition, ParCel-2 allows processes to have synchronisation
periods that are an integer multiple of the execution environment’s global
clock period.

A more complete presentation of the computing model of ParCelL-2 can be found
in [Cagnard 00].

P1 P2 P3 Pn

Synchronisation barrier

Fig. 1. Program execution in the BSP Fig. 2. Program execution on four pro-
model Cessors.

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

164 P. Kuonen, G. Babin, N. Abdennadher, and P.-J. Cagnard
2.2 The Hierarchical Syntactic Structure of ParCel-2

A ParCel-2 program can be represented as a directed graph where nodes symbol-
ize processes and directed links, the communications allowed. A major difficulty
when designing a parallel application is to determine the size of the nodes, i.e.,
the grain of parallelism. This problem is discussed in [Foster 94], where the au-
thor presents a design methodology for parallel programs. This method, called
PCAM, is based on four steps:

— Partitionning;
— Communication;
Agglomeration;

Mapping.

The first two steps focus on parallelism and seek to discover algorithms that
exhibit maximum parallelism. The third and fourth steps focus on performance
issues. In particular, the agglomeration phase aims to determine the suitable size
for the grain of parallelism.

Up to this point, we have seen a ParCelL-2 program as a flat structure where
each process is at the same level. The main objective of the hierarchical syntactic
structure of ParCel-2 is to allow for aggregate processes. The ParCelL-2 paradigm
is based on the assumption that, in most cases, the design of parallel applications
can lead to programs composed of a large number of fine grained processes, that
is, processes which execute only a small number of instructions. We call these
small processes cells, by analogy to cellular automata. In ParCelL-2, aggregates
of cells can be constructed in order to build abstract cells whose behavior is the
result of the parallel execution of the cells they contain. In other words, a cell
can be:

— a sequential process, called an elementary cell;
— an aggregate of cells, called a complex cell.

An illustration of such a program is given in Fig. 2

The concept of agglomeration of cells has two advantages. First, it provides
means for information hiding because the rest of the program does not see if a cell
is an elementary or a complex cell. Second, it allows creating cells of size greater
than the elementary cells and consequently, adjusting the grain of parallelism.

We can deduce, from the description above, that ParCel-2 is not an object ori-
ented model in the strict sense, since it does not provide any inheritance between
cell types, for example. However, it provides several features from object oriented
models that are useful in software engineering for high performance computing.
These features are information hiding and aggregation, achieved through the
hierarchical syntactic structure, and the fact that only local data can be mod-
ified by a given cell, access to data from other cells happens only through well
determined interfaces, the communication channels.

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

Intensional High Performance Computing 165

2.3 Compiling and Executing ParCel-2 Applications

From what has been said above about ParCel-2 computing model, we note that
one of the main characteristics of ParCel-2 is that processes can either be el-
ementary cells, thus very similar to traditional processes in parallel programs,
or complex cells, themselves composed of elementary or complex cells. Hence, a
ParCel-2 program can be represented by a structure like a multilevel-oriented
graph where each node corresponds to a cell (elementary or complex) and each
edge corresponds to a link. As a consequence, the main program is also a cell.
Thus, the global structure of a ParCel-2 program is intrinsically a recursive
structure; a program may be viewed at any level of abstraction desired: from the
extremely low level where one sees only elementary cells, up to the extremely
high level where there is a single complex cell, the main program. Moreover, due
to the well-defined parallel computing model of ParCel-2, a compiler can easily
compile any cell in a very efficient sequential process. Consequently, a ParCel-2
program can be compiled and executed in a number of different ways. The first
extreme case consists of compiling the main program (the outermost cell) into
a single large sequential program which can be efficiently executed on a single
processor. The other extreme case is to compile all elementary cells of the pro-
gram in a different sequential process. All the intermediate solutions are also
possible. In other words, we are now able to choose the grain of parallelism at
compilation-time instead of design-time. This feature is central for the realization
of intensional HPC.

3 Metacomputing

A metacomputer is a set of computers sharing resources and acting together to
solve a common problem given by the user [Buyya 99]. A metacomputer com-
prises many computers and terabytes of memory in a loose confederation, tied
together by a network. The user has the illusion of a single powerful computer;
he manipulates objects representing data resources, applications or physical de-
vices. A metacomputer is a dynamic environment that has some informal pool
of independant nodes, each relying on its own complete operating system, and
which can join or leave the environment whenever it desires. In other words, a
metacomputer is an extremely moving environment where the real target archi-
tecture for an application is only known at execution-time.

3.1 The Web Operating System

The Web Operating System (WOS™) [Kropf 99] was developed to provide a
user with the possibility to submit a service request without any prior knowledge
about the service (where it is available, at what cost, under which constraints)
and to have the service request fulfilled within the user’s desired parameters
(time, cost, quality of service, etc.). Three features make the WOS™ a very
attractive environment for metacomputing:

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

166 P. Kuonen, G. Babin, N. Abdennadher, and P.-J. Cagnard

1. Open Access. Most of the metacomputing projects, such as Globus [Foster
and Kesselman 97; The Globus Project], Legion [Grimshaw et al. 97; Lindahl
et al. 98], and NetSolve [Casanova and Dongarra 97|, require login privileges
and a global catalog of resources. This may be interesting for small networks
but could be impractical for large ones. Contrary to this, the WOS™ uses
distributed databases, called warehouses, that allow open access and search
procedures. The search engine takes into account the dynamic nature of the
Web. The WOS™ is based on a demand-driven computation model: users’
queries are only processed when needed and prior results are stored in the
warehouses, where they can be accessed later on.

2. Unsversality. The WOS™ aims to supply users with adequate tools that
allow the implementation of specific services not initially foreseen. In or-
der to achieve this goal, a generic service protocol (WOSP), provided by
the WOS™, allows the WOS™ node administrators to implement a set of
services, called a service class, dedicated to specific users’ needs. WOSP is
in fact a generic protocol defined through a generic grammar [Babin et al.
98]. A specific instance of this generic grammar provides the communication
support for a service class of WOS™. This specific instance is also referred
to as a version of WOSP; its semantics depends directly on the service class
it supports. In other words, knowing a specific version of WOSP is equiva-
lent to understanding the semantics of the service class supported by that
version. Several versions of WOSP can cohabit on the same WOS™ node.

3. Intensionality. The WOS™ manages contexts: hardware, software, time,
place, etc. The basic nature of the WOS™ is to answer users’ requests while
considering all these contexts; the WOS™ node will provide the best re-
sources available, as a function of the current context, which always changes.

3.2 The Web Operating System and High Performance Computing

A version of WOSP, HP-WOSP [Abdennadher et al. 00], has been defined specif-
ically to configure and execute HPC applications in the WOS™ environment.
Specifically, it supports the communication requirements for HPC applications,
which are:

— To locate potential computation nodes with the appropriate set of resources
(hardware and software) and to reserve these resources. This is called the
configuration stage;

— To launch the execution of the parallel program. This is called the execution
stage.

4 Intensional HPC

The Intensional HPC (iHPC) approach is the integration of intensional logic,
HPC, and metacomputing. Let us look at these three perspectives of iHPC in
more details.

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

Intensional High Performance Computing 167

Intensional logic is based on the notion that an expression is always evalu-
ated within a certain context [Paquet 99]. For instance, the expression “how is
the weather?” will yield very different answers, depending on where and when
it is evaluated. In most natural languages, such ambiguities are easily processed
because most conversations are done within a specific context. It is not that
easily handled in computer science, however. Intensional logic, and its special-
ized versions modal logic and temporal logic, provide the tools to manage such
context-dependant expressions. In intensional logic, this context is represented
as a multidimentional space, where many, possibly decomposable dimensions
constrain the evaluation of an expression. This means that the expression might
have an arbitrary large number of values, each one depending on a set of dimen-
sion values. Clearly, one cannot compute all the values of an expression, based on
all its dimensions. Some computing “trick” must therefore be used. This “trick”
is called eduction [Swoboda and Wadge 00]. Simply put, the eduction model of
computation states that a value should only be computed when required. That
value should be stored, so it can be reused instead of recomputed. For us, iHPC
can only exist if all the concepts of intensional logic and eduction are applied.

From an HPC perspective, iHPC involves many changes in the way of de-
veloping HPC applications, which are usually parallel applications. For iHPC to
be achieved, a parallel application should be described in such a way that all
implementations could be extracted from the same design. An implementation is
in fact a specialization of a design where all decisions about the specific (imple-
mentation and execution) constraints are made. The design description method
selected should allow for multiple dimensions of constraints to be represented
within the same design. Furthermore, an implementation should be automati-
cally produced by setting all the constraints. Therefore, we need a compiler that
can take as input a multidimensional design and all the values for the different
constraints. We call such a compiler an intensional compiler.

However, to truly be intensional, and therefore to fully take advantage of
eduction, an iHPC environment must wait until the last minute to compile the
necessary pieces of code. This should occur during the configuration stage of the
parallel execution. This is where metacomputing comes into play. Metacomput-
ing tools can be used to evaluate the user’s constraints for the execution of a
parallel application and to identify a set of computation nodes that can run the
parallel application within the user’s constraints. The selection of nodes is done
in parallel with the selection of the compilation parameters (design and execu-
tion contraints) to suit the user’s needs. This selection is dynamic and should
also use eduction. Once all suitable nodes have been identified and that a proper
implementation was constructed, the application can be executed.

To summarize, an environment can only be called an iHPC environment when
all the following requirements are met:

— The environment supports the execution of HPC applications;
— Intensional logic transcends all components of the environment:
e Eduction is used as an execution model (dynamic selection of computa-
tion nodes);

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

168 P. Kuonen, G. Babin, N. Abdennadher, and P.-J. Cagnard

e Eduction is used as a compilation model (intensional compiler).

Other researchers have thought of using intensional logic to perform high
performance computing. The GLU (Granular LUCID) parallel programming en-
vironment was developed for parallel computing [Jagannathan and Dodd 96; Ja-
gannathan et al. 97]. The GLU environment provides a “collage” of C functions
using LUCID. Yet, it does not provide an intensional HPC environment, since the
grains are fixed (they correspond to the C functions) and the environment does
not use an intensional compiler.

5 Towards an Intensional HPC Environment

We argue that the combination of ParCelL-2 and the WOS™ in particular the
HP-WOSP service class, constitutes an iHPC environment. To demonstrate this,
we will focus on the problem of choosing the grain of parallelism. The correct size
of the grain depends on the characteristics of the parallel architecture which will
execute the program. In other words, it depends on the context of the execution.
If that context is a metacomputing environment, the exact characteristics of the
target architecture are only known at execution-time. As a consequence, the size
of the grain should be fixed only at execution-time if we want to adopt the iHPC
philosophy.

Let us suppose that we have developed a service (an application) using the
ParCel-2 programming language. This service is represented by its resource
needs: CPU and network performance, particular software resources, etc. Let
us also suppose that we make this service available in the WOS™ environment.
When a WOS™ node receives a request for the execution of this service, it can
act in two different ways. First it can decide that it has enough resources to exe-
cute the service locally. In such a case, it would like to execute a fully sequential
version of this service. Otherwise (i.e., no WOS™ node can provide the resources
needed by the service), the WOS™ node can decide to split the program (the
main cell) into its components in order to execute the service in parallel. There-
fore, it will transform the received request into several requests, that is, one for
each cell (elementary or complex) which composes the main program. In so do-
ing, the WOS™ node becomes a client which requests for the execution of several
services. Since “children” cells are less complex than the father cell, there is a
higher probability to find a WOS™ node providing the requested resources. The
same reasoning can be recursively applied for each service request sent by the
current WOS™ node, until all the requests are eventually applied to elementary
cells. In other words, a ParCelL-2 application does not represent only one service,
but rather all the services corresponding to all the possible decompositions of the
ParCel-2 application (Section 2.3). In general, it is not reasonable to generate
all these services when making a ParCel-2 application available on the WOS™.
A more efficient solution consists in using an intensional compiler. When a node
receives a request and decides to run the service locally, it will look whether or
not it possesses the sequential version of the service. If not, it will compile it and
keep this sequential version for future use.

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

Intensional High Performance Computing 169

At the end of this configuration phase, the main service is seen by the system
as a set of sub-services, each of them is assigned to a WOS™ node and repre-
sents an elementary or complex ParCelL-2 cell. At this stage of our research we
assume that this assignement is static and therefore no process migration or fault
tolerancy policy are considered. The above description shows that, at least for
the problem of choosing the grain of parallelism, the association of the WOS™
and ParCel-2 creates a iHPC environment. This follows from the requirements
elicited in Section 4:

1. This combination supports the execution of HPC applications:

— ParCel-2 is a design and programming tool for HPC applications using a
BSP model of computation and an MIMD parallel programming model;

— The WOS™ provides a specialized service class, materialized through
HP-WOSP, to configure and run HPC applications.

2. This association uses an eduction approach to configure and execute an HPC
application:

— The WOS™ provides the mechanisms to dynamically select and config-
ure the nodes that will be used for the execution;

— This dynamic selection also involves the dynamic identification of the
grains of parallelisms, which can be identified in the ParCel-2 model of
the application.

3. The combination of the WOS™ and ParCel-2 can support an intensional
compilation approach:

— A parallel application made with ParCel-2 yields multiple possible im-
plementations, which vary based on the grain of parallelism, the links
established, and the actual resources available;

— The WOS™ is used to supply the parameters required by an intensional
compiler to only build the required executables.

6 Conclusion

In this paper, we have shown that the WOS™, together with the ParCel-2
programming language, leads to the creation of an environment which exhibits
the characteristics of an intensional High Performance Computing (iHPC) en-
vironment. Specifically, we showed that the approach is intensional for the de-
termination of the grain of parallelism and the selection of the nodes that will
execute these grains. Further investigations are required to validate the concepts
presented in this paper. We are currently implementing an HPC version of the
WOS™ (HP-WOS) that will allow us to compare the performances of our ap-
proach with other the performance of already available tools such GLOBUS or
NetSolve.

Although we only consider a single dimension in this paper, namely the grain
of parallelism, we are investigating the possibility to extend our approach to the
selection of the memory model (distributed or shared). This will add an extra
selection criteria for the nodes, i.e, another dimension in our iHPC environment.

Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High
Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste
Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Note:
Comnuter Science. No. 1830. Sorinaer Verlaa. June 2000. nn. 161-170.

170 P. Kuonen, G. Babin, N. Abdennadher, and P.-J. Cagnard

We also ignored other run-time issues, usually associated with high performance
computing, namely, load distribution (static and dynamic), inter-process com-
munications, and synchronization. The GLU environment might provide us with
interesting approaches which could be integrated into our vision of intensional
HPC.

References

[Abdennadher et al. 00] Abdennadher, N., G. Babin, P. Kropf and P. Kuonen, “A
dynamically configurable environment for high performance computing,” in High
performance computing 2000 (hpc 2000), Washinton, DC, USA, April 2000.

[Babin et al. 98] Babin, G., P. Kropf and H. Unger, “A two-level communication pro-
tocol for a Web Operating System (WOS™),” in IEEE Euromicro Workshop on
Network Computing, pp. 939-944, Visteras, Sweden, August 1998.

[Buyya 99] Buyya, R., High performance cluster computing : Architectures and sys-
tems, vol. 1, Prentice Hall PTR, Upper Saddle River, N.J., USA, 1999.

[Cagnard 00] Cagnard, P.-J., “The parallel cellular programming model,” in 8" eu-
romicro workshop on parallel and distributed processing (euro-pdp 2000), pp. 283—
289, Rhodes, Greece, IEEE Computer Society, January 2000.

[Casanova and Dongarra 97] Casanova, H. and J. Dongarra, “NetSolve: A network
server for solving computational science problems,” International Journal of Super-
computer Applications and High Performance Computing, 3(11), pp. 212-223, 1997.

[Foster 94] Foster, 1., Designing and building parallel programs, concepts and tools for
parallel software engineering, Addison Wesley, 1994.

[Foster and Kesselman 97] Foster, I. and C. Kesselman, “Globus: A metacomputing
infrastructure toolkit,” International Journal of Supercomputer Applications, 1997.
[Grimshaw et al. 97] Grimshaw, A., W. Wulf, J. French, A. Weaver and P. Reynolds,

“The Legion vision of a Worldwide Virtual Computer,” CACM, 40(1), January 1997.

[Jagannathan and Dodd 96] Jagannathan, R. and C. Dodd, GLU programmer’s guide,
Technical report, SRI International, Menlo Park, CA, USA, 1996.

[Jagannathan et al. 97] Jagannathan, R., C. Dodd and I. Agi, “GLU: A high-level sys-
tem for granular data-parallel programming,” Concurrency: Pratice and Experience,
(1), pp. 63-83, 1997.

[Kropf 99] Kropf, P., “Overview of the WOS project,” in 1999 Advanced Simulation
Technologies Conferences (ASTC 1999), San Diego, CA, USA, April 1999.

[Lindahl et al. 98] Lindahl, G., A. Grimshaw, A. Ferrari and K. Holcomb, Metacomput-
ing — what’s in it for me 2, http://legion.virginia.edu/papers/why.pdf, last visited
on Jan. 20, 2000.

[Paquet 99] Paquet, J., Intensional scientific programming, Phd Thesis, Faculté des
études supérieures, Université Laval, Québec, Canada, 1999.

[Swoboda and Wadge 00] Swoboda, P. and W.W. Wadge, “Vmake, ISE and IRCS:
General tools for the intensionalization of software systems,” in Intensional Pro-
gramming II, World-Scientific, Singapore, 2000.

[The Globus Project] The Globus Project, The Globus project,
http://www.globus.org, last visited on Jan. 20, 2000.

[Valiant 90] Valiant, L. G., “A bridging model for parallel computation,” Communi-
cations of the ACM, 33(8), pp. 103-111, August 1990.

	reference: Pierre Kuonen, Gilbert Babin, Nabil Abdennadher, and Paul-Jean Cagnard. "Intensional High Performance Computing." in Workshop on Distributed Communities on the Web (DCW 2000). Ste-Foy, Québec, Canada. Peter Kropf, Gilbert Babin, John Plaice, and Herwig Unger (eds.). Lecture Notes in Computer Science. No. 1830. Springer Verlag. June 2000. pp. 161-170.

