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Abstract

The demand for Software as a Service is ever increasing. With this demand comes

a proliferation of third-party service offerings to fulfill it. It thus becomes crucial

for organizations to find and select the right service to be integrated into their

existing tool landscapes. Ideally, this is done automatically and flexibly. The

objective is to always provide the best possible support to changing business needs.

Modern integration standards, such as ESB, SOA, or BPI evolved to face this chal-

lenge, e.g., through loose coupling. However, they lack description capabilities to

adequately capture service semantics, needed for adequate automated service se-

lection and integration. They also heavily depend on human expert intervention.

Next generation semantic techniques, such as SAWSDL, OWL-S, or WSMO aim

at correcting this situation. They use ontologies, which are based on formal rules

of inference. These techniques claim to extract and interpret the meaning of data,

thereby leading to more reliable automated service selection and integration.

To us however, knowing and interpreting is more than imperative, rule-based ma-

nipulation of arbitrary symbolic expressions. Pure symbolic, either syntactic or

formal-semantic, approaches will thus not provide the bridge between automation

and flexibility. This is even more so in competitive environments. Here, changes in

the input data of third-party services offerings can neither be anticipated, nor can

technical control be exercised. Unknown conditions can thus only be processed to

the extent they are predefined.

To overcome this contradiction, we investigate a hybrid symbolic/connectionist

approach. To this end, we provide a framework for automated service selec-

tion based on high-level business requirements, described by ontologies. There-

after, we explore a specific supervised artificial neural network topology called

LRAAM. With it, the compositional structure of the ontologies is transformed

into a distributed (i.e., reduced, micro-semantic) representation. It shall enable



the system to develop an “own” or “inner” representation of service descriptions,

which are then used for similarity analysis. A tool (OntoProc) was developed as

a proof of concept. With it, we conducted different experiments to explore the

validity of the approach. The tool generated output data, which we submitted to

significance tests.

Based on the experiments, the current LRAAM implementation is not a reliable

alternative for service selection and integration. We showed that the LRAAM

performs correct selection of services under specific parameters. However, for

more complex input data, it does not yet yield the expected results. We discussed

adjustments to the implementation to improve OntoProc’s performance.

Despite the inconclusive results, we are, nevertheless, convinced that purely sym-

bolic approaches to automatic integration are too restrictive when independent

third-party services are concerned. Flexibility without human intervention is be-

yond their capabilities. Encouraged by recent developments in the field of connec-

tionism (e.g., Deep Learning), we adhere to the chosen research venue. We see

it as part of a new paradigm of operating on large vectors (i.e., connectionism) to

replace rule-based manipulation of symbols.



Résumé

La demande de logiciel à la demande (Software as a Service ou SaaS) est en con-

stante augmentation. Afin de remplir cette demande, une prolifération d’offres

de services de type third-party s’en suit. Pour les organisations il est crucial de

trouver et sélectionner le service approprié pour l’incorporer dans le parc TI exis-

tant. Idéalement, cela est effectué de façon continue et flexible, l’objectif étant de

toujours fournir le meilleur support possible.

Pour faire face à cet enjeu, des standards modernes d’intégrations tels que ESB,

SOA ou BPI ont été conçus pour permettre un couplage faible (loose coupling)

entre les services. Par contre, il manque à ces standards la capacité de bien décrire

et capter la sémantique des services. Cette sémantique serait nécessaire pour une

intégration automatique adéquate. L’efficacité de ces standards dépend aussi con-

sidérablement de l’intervention humaine. Une nouvelle génération de techniques

sémantiques telles que SAWSDL, OWL-S ou WSMO vise à corriger cette situa-

tion en utilisant des ontologies. Ces dernières sont basées sur des règles formelles

d’inférence, ayant l’ambition de représenter et d’interpréter le sens des données.

Cela devrait mener à une sélection et intégration automatique supérieure de ser-

vices.

Nous croyons cependant que connaître et interpreter requiert plus que la manipula-

tion réglémentée et impérative d’expressions symbolique arbitraires. Selon nous,

les approches purement symboliques, autant syntaxiques que sémantiques, ne per-

mettent pas de combiner automatisation et flexibilité. Ceci est d’autant plus vrai

dans des environnements compétitifs. Dans ces environnements, les changements

d’offres de services ne peuvent être ni anticipés, ni gérés de façon contrôlée. Des

conditions inconnues ne peuvent être traitées que dans la mesure où elles ont été

prédéfinies.



Afin de surmonter cette contradiction, nous proposons une approche hybride sym-

bolique/connexionniste. À cette fin, nous présentons un cadre conceptuel de sélec-

tion automatique de services, basée sur des descriptions de haut niveau des besoins

d’affaires. Ces descriptions sont décrites par des ontologies. Par la suite, nous ex-

plorons une topologie spécifique de réseau neuronal artificiel, nommé LRAAM.

Avec ce dernier, la structure compositionnelle des ontologies est transformée dans

une représentation distribuée (i.e., réduite, micro-sémantique). Le LRAAM amène

le système à générer une représentation “propre” ou “interne” des descriptions on-

tologiques de services. Celles-ci peuvent être utilisées pour des analyses de simi-

larité. Un outil (OntoProc) a été conçu comme preuve de concept. Avec celui-ci,

nous conduisons différentes expériences afin d’étudier la validité de l’approche.

Les données produites par l’outil ont fait l’objet d’analyse de signification statis-

tique.

Se basant sur les expériences conduites, nous ne pouvons pas conclure que

l’implémentation de LRAAM utilisée est une alternative fiable pour la sélection

et l’intégration de services. Nous démontrons que sous certaines conditions, le

LRAAM produit une sélection correcte de services. Cependant, il n’est pas pos-

sible d’arriver à la même conclusion pour des données d’entrée plus complexes.

Nous discutons des ajustements à faire à l’implémentation afin d’augmenter la

performance de l’outil.

Malgré des résultats non-concluants, nous sommes toutefois convaincu que des ap-

proches purement symboliques d’intégration automatique sont trop contraignantes

quant il s’agit des services de type third-party. La flexibilité sans intervention

humaine se situe au-delà de leurs capacités. Encouragé par des développements

récents dans le domaine du connexionnisme (e.g., Deep Learning), nous adhérons

tout de même à la piste de recherche choisie. Nous le voyons comme faisant partie

d’un nouveau paradigme, qui est de traiter des larges vecteurs pour remplacer la

manipulation réglementée de symboles.
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1

Introduction

An organization undergoes constant change. The pressure to do so is brought about by compe-

tition, internal politics, organizational evolution, technical progress, and cost containment. An

IT organization must support this change. Information Systems (IS), i.e., a specific assembly

of applications or services1 to support distinctive organizational needs (Izza 09), play a major

role in this endeavour.

1.1 Research context

Generally, corporate IT organizations use a wide range of IS. They are composed of many ap-

plications and services to maintain IT operations. For example, such applications are deployed

for:

• managing (e.g., discovering, inventorying) network attached devices, such as laptops,

servers, or workstations; or

• managing (e.g., storing, tracking) Configuration Items (CI) (ITS 07) and relationships

among them, or

• managing (e.g., logging, dispatching) IT-related incidents and problems.

Often, the activities are part of good-practice standards for IT operations, e.g., Information

Technology Infrastructure Library (ITIL) (ITS 07), IT Asset Management (ITAM) (Int 08), or

1The relationship between application and service is explained below.
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Control Objectives for Information and related Technology (COBIT) (IT 07). Software ven-

dors align their product portfolios to meet these standards, seeking economies of scale. Con-

sequently, applications often follow a “Commercial Off-The-Shelf” approach (COTS). By the

same token, organizations adopt IT standards and expect lower costs through “out-of-the-box”

implementations (OOTB). For example, ITIL defines a process “Service Catalog Manage-

ment,” with associated tasks, such as providing, updating, deleting requestable catalog items.

A variety of service catalog management applications are offered within the market. They are

tailored to support these standardized processes and tasks. However, they may vary as to how

functionality is implemented.

Furthermore, the service catalog management process is linked to other management pro-

cesses, e.g., change, configuration, or IT financial management1. Again, an organization may

choose from a considerable number of applications tailored to support these processes, or ac-

tivities thereof.

In the era of Cloud, this number increases even further. Organizations, such as SalesForce,

ServiceNow, Akamai, etc. emerged to extend on-premise application offerings to off-premise

Cloud-based service offerings, i.e. Software as a Service (SaaS). Services can represent any-

thing from a simple request to complicated business processes (Lehaney et al. 11). They can

participate in many different IS (Kale 14). The objective is to increase reusability of applica-

tions and lower integration hurdles through standardization.

The above described organizations thus commoditize and commercialize services, such

as Customer Relationship Management, IT Service Management, Perfomance & Availability.

Other organizations request, contract, and integrate these services instead of setting up the

functionality by themselves. No expensive know-how for the service is needed. If later the

service is no longer useful, the contract is cancelled. The service, technically and commer-

cially, disappears. Clearly, this flexibility appeals to more and more organizations these days to

improve their IS (Cisco 14). Some authors even claim that it becomes mandatory for keeping

a competitive advantage (Fensel and Bussler 02, Hussain and Mastan 14).

The resulting commercial success of organizations like SalesForce with so called

super-normal profits, however, acts as an incentive for new firms to enter the market

(cf., (Frank and Cartwright 13, Chap. 11) – long-term zero-profit equilibrium) and copy the

commercially successful offerings. This necessarily leads to a proliferating number of similar

Cloud-based services to choose from as part of an adequate IS (Bughin and Chui 10).

1For more details, the interested reader is referred to respective sources on ITIL.
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Information system to

support a distinctive

need

Application

Direction of data flow

through integrations

Application pool

Figure 1.1: Application, application pool, and information system. The arrows indicate a directed
stream of data from one application to the next.

Eventually, the adoption of IT standards and resulting commoditization of services leads

to pools of on-premise applications and Cloud-based services, working in concert within cor-

porate IT landscapes. Within such pools, a given application or service is integrated with one

or more other applications or services with respective data input and output interfaces (cf.,

Fig. 1.1).

1.2 Problem statement and implication

Despite the above technical and process standardization efforts, such as ITIL, challenging is-

sues can be identified:

• IT architectures evolve due to changing business needs and the need for IT-business

alignment (Singh and Huhns 05, Izza 09, Panetto and Cecil 13).
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• Stable corporate organizations are political in nature with special-interest groups form-

ing within. Indeed, following (Olson 82), stable organizations with unchanged bound-

aries tend to accumulate more special-interest groups for collective actions1 over time.

Competing software providers use this organizational behavior to attach to such groups

to increase their chances of selling software products (applications or services). They

seek replacement of other groups’ favorite, mostly competitors’ products. This may or

may not lead to efficiency gains. It certainly leads to changes within an organization’s

application and service pool.

• Data quality (e.g., global naming conventions) in general and because of the former

point is a difficult task for organizations (Hüner et al. 09). Decentralized setup often

entails increasing syntactic and semantic divergence not accounted for within existing

application or service interfaces.

• Following a vendor–driven innovation and selling strategy, applications or services are

upgraded to more reliable versions, or because they fall out of support.

These points summarize the problem domain on which we base our entire discussion.

Namely, organizations need to constantly assess on-premise applications’ or Cloud-based ser-

vices’ adequacy to support the business. Based on expensive analyses, applications or services

(henceforward subsumed as services) are evaluated, and thereafter either dismissed, recon-

firmed, or newly selected. If a new service is selected, continued human supervision, manual

design, and costly adjustments of service interfaces are needed.

1.3 Research motivation

As depicted in Sections 1.1 and 1.2, technological outfit and corporate social behavior are

intrinsically connected. The latter implies conflicting interests within and outside corporate

organizations. Those interests are reflected in organizational structures, processes, and ideolo-

gies. Organizations have to cultivate a plurality of ideas, management approaches, and hence

a selection of methods, processes, and technologies (Brunsson 02). Indeed, these days, corpo-

rate IT organizations constantly need to navigate among the IT delivery and operation poles

1Any action taken together by a group of people whose goal is to enhance their status and achieve a common
objective. Cf., http://www.britannica.com/EBchecked/topic/1917157/collective-action-problem.
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On-Premise, Public Cloud, Private Cloud, Hybrid Cloud, Managed Service, Outsourcing, or

Outtasking1.

Organizations’ and their IT departments’ service pools are thus constantly changing and

a significant amount of money is spent to assess and disconnect “undeserving” services and

select and connect “the latest and greatest” new ones. An arsenal of highly trained, highly

paid, internal or external consultants are hired to do this never-ending job, namely selection

and integration of COTS services.

Indeed, the selection process involves a lot of challenges. It is not at last the high complex-

ity of the process itself (Ruhe 03), especially due to organizational agendas and politics men-

tioned above. Following (Mohamed et al. 07), therefore no “silver bullet” selection method

exists. To the authors, different approaches have different effectiveness depending on the con-

text. As for the integration part, Gartner (Lheureux 12) predicts that by 2018, more than 50%

of the cost of implementing 90% of new large information systems will be spent on integra-

tion. Specifically, it consists of bringing data from one service together with that of another

service (Stimmel 01). Integrators have thus to be concerned with the purposeful sharing of data

among those services and data sources in the organization (Linthicum 99). The purpose is then

to support the flow of data as part of corporate business processes. These in turn represent the

very lifelines of an organization.

In this work, we pursue an approach towards automation of at least parts of the mentioned

selection and integration efforts. We want to devise and analyze a method for a more intelligent

Service Selection and Composition (SSC) under changing conditions.

Such an SSC should (1) understand what “good” means; (2) automatically select the best2

service; (3) automatically integrate the selected service; and (4) do this continuously. Note

that the notion “select” goes beyond simple “discovery.” It represents a degree of intelligence,

namely identification and analysis towards synthesis of possible actions (Zdravković et al. 14).

We seek to substitute or at least support the usual time consuming manual, complex selection

process, the translation of business requirements into technical requirements, and the subse-

quent implementation of interfaces among the selected services through labour-intensive inte-

gration projects. Eventually, our goal is to save organizations money.

Current industrial integration techniques, such as traditional middleware (e.g., remote pro-

cedure call mechanisms, data oriented, component oriented, message oriented, application

1A description of these concepts is outside the scope of this document.
2The notions of “good” and “best” are defined in Chapter 2.
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servers), EAI tools (e.g., MS Biztalk, Tibco), BPM (e.g., BPEL, BPMN), or SOA (Oracle

Service Bus), are not suited for such a method. For many authors (Hoang and Le 09, Izza 09,

Fensel et al. 11, Hoang et al. 14), these integration techniques are blind to the most crucial as-

pect of a more intelligent SSC: understanding the semantics of services. They merely regulate

information and focus on meta-data exchange. They are syntactic in nature. The same au-

thors therefore propose the Semantic Web approach, which enables machines to understand the

meaning, or else, semantics, of services.

To realize such an SSC, we analyse the combination of two techniques. These techniques

represent and manipulate data, information, and knowledge at the semantic level. Specifically,

they are Ontologies and Artificial Neural Networks (ANN).

1.3.1 Ontologies

Following (Born et al. 07) and (Fensel et al. 11), semantic descriptions of services are neces-

sary in order to establish and warrant interoperability that does not require a human to manually

effect certain integrations that will be rapidly obsolete, or non-reusable in an environment with

the dynamic contexts presented above (Fig. 1.2).

Therefore, in the present case, semantic descriptions are produced of business activities

and how they are related, and of independent – competing – services (data model and function-

ality). Note, that a distinction between Service and Web Service is made in (Fensel et al. 11).

For (Fensel et al. 11), a Service provides value, a Web Service represents a technical means

to access it. Our focus is on Service, i.e., on what it does, as opposed to on how to access it

technically.

Our assumption is, first, that service and business activity descriptions can be more or less

similar and second, that similarity is a selection criterium. For our context, it means there is

a distance that is minimized to obtain maximal similarity. In general, such a distance can be

defined and measured in different ways. An example is the Hamming distance. To obtain it,

one counts the minimum number of letter substitutions required to transform one string into

another string – the fewer the substitutions, the more similar the strings. For example, for two

strings a = ’ibm’ and b = ’hal’, d a,b
Ham = 3. For our context, the concepts of “distance” and

“similarity” are introduced in greater detail in Section 6.3.

The most similar service (out of many) for a certain business activity is thus selected.

Eventually, the selected services’ integration is accomplished by adequate low-level attribute
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Figure 1.2: Business and IT perspective related (a) by manual labor (b) by automated machine
reasoning (adapted from (Born et al. 07)).

mapping. These mappings can be automatically constructed or adapted through syntactic or

semantic matching techniques (Euzenat and Shvaiko 13).

All descriptions are done via ontologies. An ontology is a graph-based formal concept and

knowledge description system based on formal semantics (Antoniou and van Harmelen 08),

i.e., logic. With it, we represent knowledge, such as the above mentioned business processes,

but also individual services. The latter pertains to a service’s functionality provided, and also

its underlying data model. The ontological representations of both, business processes and

services, will serve as foundation for the SSC method we analyze in this document.

1.3.2 Artificial Neural Networks

We combine the purely symbol-based ontology approach with a nonlinear, connectionist clas-

sification approach, an Artificial Neural Network (ANN). We concentrate on its capability to

encode entities stemming from compositional (e.g., graph-based) structures as distributed rep-

resentation. A distributed representation is an ANN-internal representation computed by the
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ensemble of nodes constituting the ANN. Thereby, each entity (fed as input) is represented

by a pattern of activity, distributed over many nodes. Furthermore, each node is involved in

representing many different entities (Hinton et al. 86).

This combination allows for a greater tolerance of changes in the input values than

(conventional) symbolic approaches, such as ontologies, to the representation of meaning

(Hammer and Hitzler 07, d’Avila Garcez et al. 09). Indeed, an ontology provides very precise

inferences but without any tolerance (Chan 03). However, we seek this tolerance to achieve the

flexibility needed within changing corporate service pools.

Specifically, we feed ontological information to an ANN implementation called Labelled

Recursive Auto-Associative Memory (LRAAM). With it, the entire arbitrary-sized graph struc-

ture of an ontology can potentially be compressed into a fixed-size neural network representa-

tion (Sperduti 93, de Gerlachey et al. 94). This reduced representation is then transformed into

a distance measure to quickly compare ontologies, or else, business activities and services.

Our view is that in a highly dynamic environment it is not about finding an exact, but

rather a most similar service to support an activity. To support this view, a fine-grained (i.e.,

continuous) distributed pattern as opposed to a coarse-grained (i.e., discrete) symbolic pattern

is evaluated.

1.4 Research questions

Ontologies provide a formalized conceptual view of a domain of interest. It allows for ex-

pressing complex types of entities and relations among them (Rittgen 08). Furthermore, on-

tologies provide a means of conducting automated plausibility checks (i.e., reasoning). They

are also known for the potential to become a reliable technique for realizing meaningful data

access (Poggi et al. 08). In short, ontologies allow for machine readability, encoding and ma-

nipulation of domain knowledge, and connectivity.

We consider those aspects appealing to achieve the above described goal which is, again,

to save organizations money by means of automating service selection and integration, more

than is current practice in the industry. Our primary research question is:

Can ontologies stand-alone, that is, in isolation, be used for an intelligent service selection

and integration method?
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We are confident to find valuable answers for the following reasons:

• Ontologies represent a powerful base for expressing every-day knowledge (Hurley 03).

As mentioned before, we use them to describe business processes, or more specifically,

related activities, and applications. The latter includes data model and functionality pro-

vided. The description of application data models within ontologies is shown for exam-

ple in (Trinh et al. 06, Xu et al. 06, Bagui 09, Sequeda et al. 12, Xu et al. 12).

• Computer systems can read and “understand” ontologies. It is thus possible to auto-

matically reason over the ontologies’ content. The validity of statements can be ver-

ified (Baader et al. 09), such as whether concepts are non-contradictory or if implied

relations among concepts exist. To us, this increases reliability and trust in automatically

choosing the right application functionality to support a specific business activity.

• Connectivity. Ontology based data access (ODBA) permits meaningful data access

(Kontchakov et al. 13, Bagosi et al. 14). Thereby, correspondences are automatically se-

lected and transformed into an executable mapping for migrating data from a source to

a target schema (Fagin et al. 09). Clearly, this capacity goes beyond syntactic matching

techniques within the application integration domain1 where meaning is associated by

human experts.

• Different ontologies are based on the same logic language, namely OWL (Ontology Web

Language). Consequently, we do not need to care about the semantic heterogeneity of

different “grammars”, as the OWL primitives’ semantics are equal for all ontological

representations (Jardim-Goncalves et al. 13). We only focus on the semantics encoded

within the ontologies themselves. For our research, it pertains to ontology matching

which is the process of finding correspondences, mappings, as a solution to semantic

heterogeneity among ontologies (Euzenat and Shvaiko 07).

The last point is of special interest. We describe services and processes by means of OWL-

based ontologies. Semantic heterogeneity is inherent, as stated in Section 1.2. Consequently,

finding semantic similarity among entities will help to know which service best2 supports a

certain activity. As stated, we assume that such a service’s ontological description is similar

1cf., Chap. 2.
2For a definition of ”best”, cf., Chap. 2.
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to an activity’s ontological description. Thus, when ontologies are used for integration the

integration problem becomes an ontology matching, that is, a mapping problem.

As briefly mentioned in Section 1.3, from the perspective of changing conditions, however,

we think that the above symbol-based mapping alone is not sufficient for an intelligent SSC

method1. The reason is that ontologies rely on unique naming in order to connect facts to

guide some task (DARPA 08). In other words, an ontology based system assumes that a single,

well-formed ontology applies throughout the domain of interest.

From Section 1.2, we know that the corporate IT domain does not respect this assumption.

The ever changing business conditions lead to a constant need for evaluating the similarity

of independent ontologies, either representing business activities, or representing services to

support the activities. Automatically establishing mappings, such as based on precision and

recall, respectively F-Value2, on such a large scale however remains a challenge (Diallo 14,

Otero-Cerdeira et al. 15). As an arbitrary (high) number of ontologies needs to be evalu-

ated continuously, these challenges include efficiency in terms of search space and time con-

sumption, effectiveness in terms of correct and complete identification of semantic correspon-

dences (Rahm 11), the potential use of possibly fragmented background knowledge, or user

involvement (Shvaiko and Euzenat 13), in the present case, beyond organizational borders.

To address some of these challenges, such as correct identification and decreasing the need

for human intervention, we complement purely symbol-based mapping methods with a nonlin-

ear classification approach, the LRAAM. With it, we combine the expressiveness of symbolic

knowledge representations, i.e., ontologies, with the robustness of ANNs in the face of chang-

ing conditions (Hitzler et al. 05).

ANN’s are made up of a connected network of individual computing elements, mimicking

neurons. Often, they are deployed for classification tasks (such as credit-risk assessment), data-

processing tasks (adaptive signal processing), or approximation of arbitrary functions (time-

series modeling and prediction) (Jones 08). In the context of this thesis, we explore properties

such as learning by example and pattern recognition. The secondary research questions we

want to answer is:

1A number of mapping approaches, all symbol-based, such as terminological, structural, or and formal seman-
tic, are discussed in Section 5.1.

2The description of those measures is beyond the scope of this work. Cf., (Rijsbergen 79), (Makhoul et al. 99),
and (Do and Rahm 02) for further details.
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Other than classical symbol-based ontology matching, is an LRAAM, specifically its dis-

tributed patterns, a reliable alternative matching technique as part of an intelligent service

selection and integration method?

Technically, we are interested in the LRAAM’s potential to compress the symbol-based

labelled, directed, acyclic graph structure of ontologies of arbitrary size into a fixed-size neu-

ral network representation. We want to use the resulting (non-symbolic) distance measure to

quickly compare ontologies, or parts of it. (cf., Chap. 6 and 7).

1.5 Contributions

We aim at establishing a technical method to systematically automate the service selection

and integration process under changing conditions. It is based on the concepts of ontologies

for describing services and processes, and on an ANN, the LRAAM, as matching technique

between ontologies. Specifically, we propose an implementation to answer above research

questions. Thereby, algorithms for ontology parsing and managing the neural network are

executed. We test internal and external validity of the implementation. As a proof of concept,

we simulate real-life scenarios, such as changing business activities supported by an adjusting

services infrastructure and data flows. Specific contributions of this work are:

• a critical review of current syntax and formal-semantics based application integration

and service composition approaches. The context is “automation” vs. “flexibility” (cf.,

Chap. 2, 3, and 5);

• an encompassing (i.e., global) service selection and composition algorithm (cf., Chap. 4).

The algorithm receives and transforms ontologies (process and service representations).

It then calls a subsequent ontology matching algorithm;

• an ANN-based ontology matching algorithm (cf., Chap. 6 and 7). It translates the

arbitrary-sized compositional structure of ontologies into reduced, fixed-sized vectors

(assembled into vector lists). They are used to compare and thus match activities and

services; and

• the identification of specific, promising research venues. Those venues address specific

phenomena found during the experimentation phase.
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1.6 Research methodology

Following (Dodig-Crnkovic 02), computer science research can be categorized in three do-

mains: Theoretical, Experimental, and Simulation. In this research, the adopted method-

ological process is Experimental. We chose it for several reasons: Our experiments might

bring unexpected phenomena to light. Based on those, we could potentially correct our ap-

proach (Tichy 97). Furthermore, our experiments may lead to new, useful, and unexpected

insights, and open new areas of investigation. It seems natural to assume this, if nonlinear

classification algorithms, such as ANNs, are involved. They typically exhibit properties not

open to deductive analysis (Dodig-Crnkovic 02). Finally, the context of service selection and

integration represents a real use case. The use of experiments brings our research closer to that

reality.

We conducted the following research steps:

Functional modeling We discuss the existent body of knowledge of information systems in-

tegration. It includes syntactic and semantic integration methods (cf., Chap. 2, 3, and 5).

Thereby, we focus on standardization/automation and flexibility and identify shortcom-

ings of the current practice (e.g., Sect. 2.5, 3.4, and 5.4). A different service selection and

integration approach is derived and introduced. We describe its functionality, advocating

a hybrid symbolic/connectionist as opposed to a pure and restrictive symbolic approach

to integration (cf., Sect. 4.1, and Chap. 6).

Technical design The functional description is transformed into a technical specification (cf.,

Sect. 4.2, and Chap. 7). Specific technical aspects are considered and established.

Prototypical implementation The technical specifications are implemented as a prototype,

called OntoProc (cf., Chap 7 and 8 for further details). Thereby, a number of constraining

parameters are defined. It assures a confined and therefore tractable environment to

conduct experiments.

Experimentation In OntoProc, variables are manipulated and empirical data a generated. Dif-

ferent experiments are conducted and presented (cf., Chap. 8). We discuss and use them

to conclusively answer the research questions (cf., Chap. 9).
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1.7 Document structure

In Chapter 2, we depict industrial (i.e., syntactic) integration techniques. It includes the en-

terprise service bus, web services, or service-oriented architectures. We discuss respective

shortcomings regarding automation and flexibility. In Chapter 3, we take a closer look at

ontologies and ontology-based approaches to integration. Semantic technologies clearly aim

at increasing flexibility and automation over syntactic approaches. It is achieved by means

of formalized knowledge representation and machine reasoning. In Chapter 4, we derive an

ontology-based integration algorithm. It is implemented within a prototype tool called Onto-

Proc. The algorithm’s goal is to select the best possible chain of services to support a given

business process. Our assumption is that business processes and services are represented by

independent ontologies. Ontologies can be compared, i.e., matched. Matching pertains to map-

ping. This, in turn, is a central concept of integration, namely mapping of attributes. Chapter 5

presents an overview of classic ontology matching methods. We discuss their merits and short-

comings. We also position them against our approach, which is to use a subsymbolic neural

network implementation as matching method. In Chapter 6, we then introduce and explain

the LRAAM-based matching method. It is also implemented within OntoProc. The respective

algorithm is shown in Chapter 7. Thereafter, we explore its capability to provide a matching of

ontologies (and consequently a selection of services), superior to the aforementioned symbol-

based techniques. To this end, in Chapter 8, we set up and describe experiments we conduct.

In light of our research questions, the results are discussed Chapter 9. Chapter 10 concludes

the work. We summarize the finding at the general level of information systems integration and

draw conclusions for further research venues.
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Selection and Integration

As stated in Chapter 1, an organization is exposed to a continuous adaptation pressure. Appli-

cations and services (subsumed as services) are constantly on- and offboarded with respect to

the IS they are part of. Efficient and effective service (or application) selection and integration

is of high importance.

When selecting and integrating services under above conditions, however, two opposing

concepts need to be reconciled: standardization and flexibility. The first represents formaliza-

tion, industrialization and automation leading to warranted efficiency gains, scalability, less-to-

no manual intervention, and cost cutting. The second imposes an increasing need for agility to

always use the service, which best supports certain business requirements. Thereby, “best sup-

port” is defined as follows: With s ∈ S a service and r ∈ R a requirement, δ : s×r → [0,∞] is

a matching function, such that δ(s, r) represents the level at which service s does not supports

requirement r. It follows that if s completely supports r, δ(s, r) = 0, otherwise δ(s, r) > 0.

Consequently, a service s⋆, satisfying the condition δ(s⋆, r) ≤ δ(s, r), ∀r ∈ R, is considered

best support for requirements set R.

The tension between standardization and flexibility manifests within “. . . an accumulating

resistance against change (Hanseth and Ciborra 07).” As an integrated IS consolidates techni-

cally and organisationally, it becomes a de facto standard and is therefore increasingly prob-

lematic to reverse or change. In line with (Callon 90), the degree of irreversibility depends on

the extent, to which (1) it is difficult to come back to a state where the integrated IS was only

one amongst many possible choices, and (2) it shapes or forces subsequent service selections

and integrations.
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2. SELECTION AND INTEGRATION

In this chapter, we revisit the service selection and integration domains. We discuss the

flexibility of standards on an enterprise scale. We look at how quickly services can be selected,

connected or disconnected in order to establish, adapt, or reverse IS to follow the changing

business domain. Thereby, we are interested in the degree of automation with which selection

and integration happens. From a cost perspective, a selection and integration standard which

combines automated / flexible is clearly preferred over automated / standardized or manual /

flexible, let alone manual / standardized.

2.1 Service Selection

From Section 1.3, we know that no commonly accepted way exists for COTS selection (Ruhe 03).

After reviewing eighteen specific on-premise service (i.e., application) selection approaches,

(Mohamed et al. 07) however identified 5 steps which appear in all approaches. The authors

refer to these steps as “General COTS Selection (GCS) Process.”

• Step 1: Define the evaluation criteria based on stakeholders’ requirements and con-

straints.

• Step 2: Search for COTS products.

• Step 3: Filter the search results based on a set of ’must-have’ requirements. This results

in defining a short list of most promising COTS candidates.

• Step 4: Evaluate COTS candidates on the short list which are to be evaluated in more

detail.

• Step 5: Analyze the evaluation data (i.e. the output of Step 4) and select the COTS

product that has the best fitness with the criteria.

The GCS process is geared towards on-premise application selection. Each step repre-

sents human involvement. It is time consuming and expensive, not only for the requesting

organization, but also for the providers of COTS services. Highly skilled members of the

selecting organization or of supporting third-party consultancy offices are engaged in this pro-

cess. Especially laborious examples of GCS are tender process based on the WTO Government

Procurement Agreement (Chen and Whalley 11). To guarantee objectivity, government organi-

zations in main industrialized countries are obliged by this agreement when procuring material

or services.
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With maturing Cloud-based service offerings, as mentioned in Section 1.1, however, the

above GCS, as depicted in 2007, is increasingly challenged. The costs to conduct multi-month

to multi-year selection processes becomes just too high to screen the proliferating number of

rich1 Cloud-based service offerings. The above Step 2 alone, which in (Mohamed et al. 07)

received no further description, transforms into a demanding task itself. Even in more recent

research on the topic (Hedman and Andersson 14), this task is not addressed. The authors

basically go from a requirements phase directly to a service appraisal phase. Clearly, the as-

sumption is still to have full transparency about relevant potential services to be assessed. They

are presumed to be just known through manual research.

Recent Cloud-based service selection methods are depicted in (Klusch and Kapahnke 12),

(Sundareswaran et al. 12), (Qu et al. 13), (Qu and Buyya 14), (Whaiduzzaman et al. 14),

(Jrad et al. 15), or (Modica and Tomarchio 15). Two interesting commonalities can be per-

ceived. First, Cloud-based services are still mainly considered to reside on the infrastructure

level, i.e., IaaS (Infrastructure as a Service). It follows that service selection focuses on P&A

(Performance and Availability) and non-functional aspects, such as price, pricing units, or user

feedback. Examples for P&A selection criteria are storage capacity, CPU speed, or memory

used (cf., Fig. 2.1). The services’ fitness for purpose, i.e., what they do, are directly related to

the services’ fitness for use, i.e., how well they do it. If a service consumer requests a certain

compute performance (i.e., what), exactly that is (supposedly) delivered (i.e., how well). Be-

cause of this simplicity, it makes capturing the service nature for comparison much easier. A

certain degree of automation of the selection process can be established through comparison of

relevant number- or string-based parameters.

Second, if the services discussed are on the application level ((Klusch and Kapahnke 12),

(Modica and Tomarchio 15)), i.e., SaaS, the services are describable in terms of parameter in-

puts, outputs, preconditions, and effects (IOPEs). IOPE is a functional description depicting

the transformation produced by the service. It concerns the required inputs (Input), the gener-

ated outputs (Output), the constraints the execution of the service might depend on (Condition),

and the effects (Result) the execution has (Fensel et al. 11). Example2: to complete the sale,

a book-selling service requires as input a credit card number and expiration date, but also the

precondition that the credit card actually exists and is not overdrawn. The result of the sale

1that is, providing similar functionality as on-premise COTS applications, and therefore replacing them more
and more.

2http://www.daml.org/services/owl-s/1.0/owl-s.html).
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2. SELECTION AND INTEGRATION

Figure 2.1: Service feature and requirements model: service selection based on few quantifiable
criteria.

is the output of a receipt that confirms the proper execution of the transaction, and as effect

the transfer of ownership and the physical transfer of the book from the the warehouse of the

seller to the address of the buyer. (Klusch and Kapahnke 12) shows that under such a regime

powerful automatic selection performance can be achieved. However, they are again based on

comparison of string- or number-based parameters.

Therefore, we think that the category of SaaS services, such as provided by SalesForce,

ServiceNow, etc. (cf., Sect. 1.1), do not lend themselves to simple IOPE descriptions. They are

considerably more complex than the services discussed above, as they provide rich OOTB, yet

configurable, functionality, similar to on-premise COTS applications or services.

To us, it is thus necessary to analyze a different way of describing services. Such a de-

scription should uniformly apply to services either on-premise or Cloud-based, either simple

or rich. Eventually it should serve reliable, automatic comparison to enable the selection of the

most adequate service for certain business requirements, to be integrated into the organization’s

existing service landscape.

In the next section, we further approach the topic as we shed more light on the term inte-

gration.
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2.2 Service Integration

2.2 Service Integration

Depending on nowadays sprawling social or technological contexts, integration might have

different meanings. Some examples are given as follows:

• In business administration, it is the process of attaining close and seamless coordination

between several departments, groups, organizations, systems, etc.1, or

• in technology, it is a popular buzzword referring to two or more technical components

merged together into a single system2, or

• in information technology, it is the process of linking together different computing sys-

tems and software applications to act as a coordinated whole3, or more specifically,

• in Enterprise Integration (EI), it facilitates the right information at the right time at the

right place through connecting all the necessary functions and heterogeneous functional

entities (information systems, devices, and people) in order to improve cooperation and

coordination so that the enterprise behaves as an integrated whole, therefore enhancing

its overall productivity, flexibility, and capacity for management of change (or reactiv-

ity) (Vernadat 96), or

• in Enterprise Application Integration (EAI), it is the combination of processes, software,

standards, and hardware resulting in the seamless connection of two or more IS allowing

them to operate as one (Gupta and Sharma 03).

Based on those descriptions, we consider EAI a subset of EI as it focused on its technical

realisation. Moreover, EI and EAI emphasize inner–organizational IS. It relies on a strong

decision authority that governs the set up of integrations and IS.

What seems to be missing however is the notion of flexibility. How quickly can a organiza-

tion adapt existing, or create and put into production, new business processes without IT being

too late, too costly, or beside the requirements altogether?

For (Molina et al. 98), EI/EAI is therefore rather a vision. It is a life cycle of periodi-

cally measuring and closing the gap between changing business requirements and IT support.

Clearly, each iteration represents a significant cost factor. It deals with changing technologies,
1http://www.businessdictionary.com/definition/integration.html
2http://www.webopedia.com/TERM/I/integrated.html
3CIS 8020 - Systems Integration, Georgia State University OECD.
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and moreover, with people and opinions about what technologies (applications or services) to

keep or to replace. Indeed, for the authors of (Lee et al. 03), one of the biggest challenges in EI

is the impact of experts’ beliefs and perceptions. They therefore state that technical integration

and “behavioural integration” must equally be taken into account. The latter term – behavioural

integration – is noteworthy, because it represents a significant cost driver, as long as a rigor-

ous, reliable, and auto-adaptable, i.e., intelligent service selection and integration support is

missing.

2.2.1 Integration for the networked company

One significant development in recent years to address this problem of missing automation,

flexibility, and high costs of EI/EAI is service orientation.

The basic idea is to modularize and wrap applications behind a formally described access

point or interface, e.g., Application Programming Interface (API) . APIs follow rigorous pro-

tocols (e.g., SOAP, REST, JSON (Erl et al. 14)) and are accessible over the network. Through

the API, an application’s functionality can automatically be discovered (e.g., using UDDI reg-

istries (Kale 14)) and consumed as a service. Eventually, the objective is to automatically

connect several services together to form meaningful data processing work flows supporting

business processes. The architectural principle became known as Service Oriented Architec-

ture (SOA) empowering organizations to assemble complex IS with unprecedented flexibility

as business requirements shift over time (Erl 04). Following (Kale 14), the essential goal of a

SOA is to lower integration hurdles by converting monolithic and static systems into modular

and flexible components, that can be reused in many different contexts. For further details, cf.,

Section 2.4.2.

As stated in Chapter 1, the concept is pushed beyond the corporate limits, for example as a

paid third-party Cloud-based services. The latter practically extends SOA into nowadays Cloud

based service offerings (SaaS).

2.2.2 Loose coupling and interoperability

An organization’s goal thus is to become agile and reduce costs. As a Cloud based third-party

service is acquired, technical authority over the service and access protocols is lost however.

In opposition to organization-internal services, neither of those can be changed nor should

it. It could have unintended and unpredictable effects on the usability of the service in other
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customers’ contexts. Therefore, in a service oriented approach, be it internal or Cloud-based,

services need to be loosely coupled.

Loose coupling refers to services that exchange meaningful data while continuing their own

logic of operation (Chen 13). Although this logic involves people, processes, and technologies,

none of it is the concern of the data consuming party. In that perspective, classic, i.e., tightly

coupling1, integration does not respond adequately. Indeed, it leads to functional dependen-

cies of components which therefore cannot be separated (Panetto 07). By opposition, loosely

coupled services are independent of other services. As mentioned, they can be recombined and

reused in different contexts. Again, it makes them more adaptable with lesser costs and quicker

implementation (Panetto and Cecil 13) (cf., Table 2.1 for a brief comparison).

Table 2.1: Loose vs. tight coupling (Roshen 09)

Factor Loose coupling Tight coupling

Physical connection indirect connection
through an intermediary

direct connection

Communication style asynchronous synchronous

System type weakly typed strongly typed

Interaction pattern distributed logic centralized logic

Service binding dynamic binding static binding

This is especially true for the networked organization, an organization that makes inten-

sive use of interactive Cloud-based or on-premise technologies to manage ties with changing

external stakeholders – customers and business partners (Bughin and Chui 10). For this orga-

nization, integration is therefore less about coupling systems tightly than it is about making

them interoperable.

Interoperability emphasizes autonomy and flexibility whereas integration refers to coordi-

nation difficult to reverse (Chen 13). For (Committee 90), interoperability is the ability of two

or more systems or components to exchange information and to use the information that has

been exchanged. Following ISO/IEC 2382 (01.01.47), it is the capacity to communicate or

transfer data among various functional units in a manner that requires the user to have little or

no knowledge of the unique characteristics of those units.

1Specific techniques are detailed in Section 2.4.
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Interoperability is thus similar to EI/EAI in that different IS operate together to improve

business outcomes. It has however a focus on connecting independent applications, or else

services, for which no technical authority exists. Tight coupling which entails the possibility

of altering IT components themselves to fit an integration is not possible.

In light of our search for flexible and automated on-premise application or Cloud-based

service selection and integration standards for dynamic, large-scale IS, we thus focus on inte-

gration in the sense of application or service interoperability. Under this angle, IS components,

applications and services, are a given to the integration problem rather than an outcome. They

evolve over time, but not for integration purposes. They can only be replaced by more appro-

priate ones. Flexibility to quickly connect or disconnect such components to form adequate IS

thus resides within the integration standard.

In the next section, we concretize integration dimensions along which we discuss current

integration standards. Thereby, we also situate our specific research which is an intelligent

Service Selection and Composition (SSC). We focus the discussion on the combination auto-

mated/flexible.

2.3 Integration dimensions

Based on (Linthicum 99), (Stonebraker 99), (Linthicum 03), and others, (Izza 09) identifies

four integration dimensions, namely Scope, Viewpoints, Layers, Levels:

Scope: (Vernadat 02, Singh and Huhns 05) distinguish between intra-enterprise and inter-

enterprise . The authors draw the classical line between integration (within company borders)

and interoperability (beyond company borders). As mentioned in Sections 2.1 and 2.2.2, to

cope with the rate of change, a company cannot any longer afford to make this distinction.

Again, we think that integration and interoperability will need to be the same.

Viewpoints: For (Hasselbring 00, Izza 09), three main viewpoints exist: the user’s view

(external view), the designer’s view (conceptual view), and the programmer’s view (internal

view). The user’s view concerns domain experts and business users. The designer’s view

concerns the different models used during the design of information systems. The program-

mer’s view refers to the implementation of IS. Our research clearly focuses on the first two

viewpoints. However, our ideal of a purely service oriented semantic application selection and

integration method would only leave the users’ view. It is them who set the business require-

ments. The designer would be replaced by the automated/flexible system. The developer is
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irrelevant as the services’ functionality is to be known by the system but not its implementation

(cf., Sect. 1.3).

Layers: Several integration layers, such as data model, business model, broken down into

application interface, method, user interface (Linthicum 99), data and event (Stonebraker 99),

or data, message and process (Lubblinsky and Tyomkin 03) have been consolidated into data,

message, and process layers. The data layer deals with moving or federating data among multi-

ple data stores. Thereby, data integration bypasses application logic. Following (Izza 09), mes-

sage or service integration, commonly referred to as EAI, assumes message exchange among

applications integrated into IS. Process integration views the enterprise as a set of interrelated

processes. It is responsible for handling message flows, implementing rules and defining the

overall process execution.

Levels: Four main integration levels, namely hardware, platform, syntactical, semantic, are

identified (Sheth 99, Xu et al. 03). The hardware level encompasses differences in computer

hardware, networks, etc. The platform level encompasses differences in operating system,

database platform, middleware, etc. The syntactical level encompasses the way the data model

and operation signatures are written down. The semantic level encompasses the intended mean-

ing of the concepts in a data schema. For these authors, each level is built on the previous one.

An almost identical view is depicted in (Fenner 03) and (Smirnov et al. 03). The authors

identify Platform as being part of the dimension Layer:

• Platform Integration: It deals with the underlying physical network architecture but also

with the pertaining hardware and management software.

• Data Integration: The location of data must be identified, recorded, and a meta data

model must be built (a master guide for various data stores). Data can be shared or dis-

tributed across database systems, providing it is well-formed and sent through standard

formats1.

• Application Integration: The goal is to bring data or a function from one application

together with that of another application that together provide near real-time integration.

• Business Process Integration (BPI): It is fundamentally important for a corporation to

specify the processes guiding in the exchange of enterprise information. It allows or-

ganizations to constantly improve operations, reduce costs, or improve responsiveness
1e.g., COM+/DCOM, CORBA, Webservices, JSON, JMS, RMI, XML.
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to customer demands. It is a combination of tasks, procedures, organizations, required

input and output information, and tools needed for each step in a business process.

For our subsequent discussion, we adhere to the above classifications. We adapt the di-

mensions Layer and Level though. Based on (Habermas 84), (Ulrich 01), and (Ludolph 04),

we move Data to the dimension Level. Clearly, in currently realized IS, Semantic is not just an

abstraction of Syntactic, but Syntactic is also an abstraction of symbolic Data. The dimension

Level is semiotic in nature. Furthermore, to us, Hardware and Platform rather belongs to the

dimension Layer. We see it as a “realization dimension” where Process is nothing else than

an orchestrated ensemble of application or service components, sending meaningful messages,

related through application interfaces thereby forming IS (cf., Sect. 1.1). This classification is

summarized in Figure 2.2.

Integration

Intra-organizational

Inter-organizational

Programmer

Scope

Viewpoint

Designer/System

User

Data

Application/Service/Message

Process

Layer

Level

Syntactic

Platform

Hardware

Semantic

Figure 2.2: Integration dimensions (Izza 09)

The grey box User is, as stated before, considered a given. It is outside of the integration
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approach, but represents the requirements to it. Similarly, the concept Process is also situated

outside. It is a consequence or outcome of fulfilled requirements as defined by the user. Note,

that we consider Hardware and Platform also as a given and not relevant.

Concluding remarks Based on Figure 2.2, we concentrate on the framed concepts which

for us pertain to an intelligent SSC: Through meaningful selection and integration (Designer /

System), the application components, or else, service (Applications / Services / Messages), pro-

vide the right data (Semantic) to the right place, notwithstanding inter- or intraorganisational,

to support a distinctive need, as defined by the user.

Again, the word “meaningful” stands for flexible and automated selection and integration

of functionality provided by services/applications. It is needed to cope with changing business

activities, which otherwise would bind many financial and human resources.

In the next section, we introduce some current integration techniques. As mentioned in

Section 1.3, they are syntactic in nature. For each technique, we discuss its degree of automa-

tion and flexibility when connecting services or applications.

2.4 Common integration techniques

Within nowadays IS, Data is represented in the concept of linguistic signs, which is also the

fundamental unit of database systems (Beynon-Davies 03). Thereby, successful sign commu-

nication is the key factor for integration (i.e., interoperability) among services (Liu et al. 15).

Following (Saussure 83), a linguistic sign is not a link between a thing and a name, but

between a concept, i.e. the signified, and a pattern, i.e., the signifier. The pattern, e.g., symbol

or sound, may be distinguished from the concept associated with it (cf., Fig. 2.3).

In (Chandler 02), three types of signs are distinguished: symbolic, iconic, indexical. In our

context, data is of symbolic nature. It pertains to a signifier that does not resemble signified. It

is fundamentally arbitrary. Therefore, the relationship between signified and signifier must be

learned, e.g., alphabetical letters, words, sentences, punctuation marks, or numbers. To quote

Charles Peirce, “Nothing is a sign unless it is interpreted as a sign (Peirce 58).” Anything

can be a sign as long as someone learns and interprets it as signifying something other than

itself (Chandler 02). By extension, the syntax of a data representation specifies a set of rules

for combining symbols and arrangements of symbols to form statements in the representation

formalism (Beynon-Davies 03).
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Figure 2.3: Symbolic sign (adapted from (Saussure 83)

Integration techniques in the sense of interoperability thus focus on purposefully moving

symbolic data between loosely coupled services and their data stores, which do comply with

a specific syntactical standard, but which do not have a meaning in itself (cf., Sect. 3.1 for

further details). Prominent examples are the aforementioned SOA (cf., Sect. 2.2.1), which is

application-integration centric, or BPI (Business Process Integration), which builds on top of

it.

After introducing a simple example we use throughout the next sections, both, SOA and

BPI, are discussed in more details.

2.4.1 Running example

Let us assume a simple bank credit loan process as described in Figure 2.4. Grey boxes repre-

sent services, which exchange data. They thus need to be integrated. We make no assumptions

on the services’ delivery model. They may be on-premise, an extra-organizational business

partner offering, or Cloud-based provided by a third-party.

1. Meet with

customer

2. Request loan

amount

3. Capture

personal

information incl.

ID (e.g., social

security

number)

4. Get credit

rating

5. Get loan

approval

Figure 2.4: Example process. Grey boxes represent services.
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Merely, the bank’s functional and non-functional requirements1 decide on the most appro-

priate service. Here, the question “make or buy” arises. If it is the latter, it might, however,

entail a choice among two (or more) services advertised in the market to offer similar function-

ality.

Let us now suppose that step 4 (Get credit rating) is assumed by such a third-party service.

Furthermore, a new service becomes available in the market. It is offered by a competitor.

For some reason, it is identical2 to the old one, except for the rating (or scoring) algorithm it

deploys. It is a sophisticated new big-data algorithm, which renders much more reliable scoring

values.

We briefly discuss this challenge, namely to automatically exchange the services, for each

integration approach presented below.

2.4.2 SOA

SOA (Service Oriented Architecture) focuses on sharing applications’ functionality, which is

exposed as a service. Programmatically the functionality is accessible through an application’s

API, as opposed to a user interface. SOA is thus part of the syntactic application integration

domain. It emphasizes agile IT systems through reusability of application functionality. Fol-

lowing (Roshen 09), SOA services are not developed to solve business problems. They are

generic and simple enough to be assembled in a specific order to meet business needs. This

also explains the standardized IOPE-centric reasoning for SaaS-based service selection meth-

ods (cf., Sect. 2.1). However, it is in contrast to (Lehaney et al. 11), for which SOA services

can also represent complicated business processes. For reasons outlined in Section 1, we adhere

to the latter. The evolution of SOA is depicted in Figure 2.5 and discussed below.

Sockets

Sockets are communication end points with a name and address in the network. They are

created by an application (mostly server) and bound to a port. Then, the application can listen

for incoming data on that port. Another application (mostly a client) connects and writes to that

socket using the listing application’s IP address and the defined port. The listening application

reads the data as soon as the other application writes the data.

1excluding aspects such as security and privacy, which we assume to be established.
2For the sake of the argument, it is not relevant what that implies.
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Figure 2.5: SOA evolution (adapted from (Roshen 09)

The connectivity code for this is part of the applications and conceived by programmers.

It is deeply entrenched in the application which limits reuse (Roshen 09). It is not possible to

share functionality among applications. However, Sockets provide connectivity among appli-

cation which clearly is the basis for integration, and by extension the aimed intelligent SSC.

RPC

RPC (Remote Procedure Call) builds on top of Sockets. It allows to share functionality among

applications (Juric 07). Specifically, an application calls a function of an other application on

a remote system (cf., Fig. 2.6). It sends parameters and receives return values.

Through the client stub, RPCs allow access to remote functions as if they were local. How-

ever, the integration is programming language dependent and hardcoded “point-to-point,” tuned

to the call receiving application. It limits automation and flexibility as quick on- and off-

boarding of applications, such as needed for flexible IS, is of much effort and assumed by

human experts. Furthermore, the roles “caller” (client) and “receiver” (server) are predefined.

The client may access the server’s functions but not vice versa.

Running example: For business reasons, let us assume the replacement of the credit rating

service with a more sophisticated one. RPCs are hard-coded. It would, roughly, entail stopping

runtime activities, analysing & renewing RPCs, and testing & moving them to operation to
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Figure 2.6: Remote procedure call process (Newmarch 12)

resume the process. All tasks are assumed by experts, thus implemented manually. Further-

more, the new service would need to assure the same communication protocol, implementation

language, and also a synchronous communication. Eventually, pure RPC limit the replacement

activity to in-house services. It represents tight coupling and is not adequate for quick, let alone

automatic replacements.

ORB

ORB (Object Request Broker) logically separates an application into objects, which perform

specific operations. It also hides network protocol interfaces from the connected applications.

It thus enables seamless interoperability between remote objects without the need to look at

the connection details (Juric 07). The latter is another shortcoming of RPC, the entanglement

of connectivity and marshalling1 code. Their separation increases usability of the application

code. ORB-based integration can thus move away from non-scalable point-to-point integration

as the ORB takes care of the connectivity part (cf., Fig. 2.7).

1The process of packaging the function call and parameters to be sent in a message (similar to serialization).
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Machine 1
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Figure 2.7: General ORB architecture ((Roshen 09))

On transmission, ORB transforms implementation dependent parameters into a platform in-

dependent format, IDL (Interface Definition Language). At the receiving end, it is transformed

back into the local (maybe different) format. Applications written in different languages, such

has C, C++, Java, can now share functionality. This is not possible with RPC.

As implementation boundaries are thus of no concern, flexibility is increased. Applications

need to know only what requests they can make and how to make them (i.e., method names and

signatures). In principle, adequate composite applications or services can be operated automat-

ically. However, the needed functional integration aspects are again decided and implemented,

i.e., coded, by human experts. Down to the symbol, they need to control all ends involved

in the integration. Clearly, it poses problems regarding quick adaptation of integrations when

reaching beyond organizational boundaries, which is the case with Cloud-based service offer-

ings.

Running example: Similar to RPC, ORB calls are hard-coded. The replacement of the credit

rating service with a more sophisticated one would also entail stopping runtime activities,

analysing & replacing existing ORBs, and testing & moving them to operation to resume the
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process. Different to RPCs, the new service could be implemented with a different (object-

oriented) programming languages or use a different communication protocol. ORB-based inte-

gration also supposes a synchronous communication pattern. Eventually, pure ORB limits the

replacement activity to in-house services. It still represents tight coupling and is not adequate

for quick, automatic replacements.

Messaging

Messaging is generally an asynchronous method of passing data among applications (Sherif 09).

This is different from the aforementioned techniques. Consequently, a temporary storage, a

message queue, has to be provided. In it, messages are stored by a sender application until a

receiver application connects to it to fetch the data. The message itself is a wrapper of data. It

has a header and body. The header is used for control information (i.e., message ID, priority,

date, time, origin, destination, etc.), the body contains the payload, such as informative events

or commands to invoke functions or methods. The MOM (Message Oriented Middleware) then

sends the message to a remote machine where it is read and processed (cf., Fig. 2.8).

One advantage of Messaging over RPC and ORB is that applications do not need to wait for

return values, such as the case for synchronous calls. Much larger numbers of applications than

with synchronous RPC or ORB can efficiently be integrated as no timing regime is imposed on

the applications.

Clearly, the concept leads to a further decoupling of applications. Replacing them quickly

is less critical if they communicate asynchronously. It thus provides more flexibility to follow

changing business needs. However, operating a messaging system is costly. It requires high

maintenance efforts by experts experiencing a steep learning curve (Roshen 09). Once these

experts defined and implemented all relevant n-tuples of sending and receiving applications and

their specific data needs, it works highly automated and reliable. During operation, the experts

also correct payload deficiencies. Syntactic errors, such as truncated strings might otherwise

break complex messaging flows. For this reason, Messaging classically presupposes technical

and financial authority, limiting it naturally to inner-, possibly extra-organizational integration.

Running example: The replacement of the credit rating service with a more sophisticated

one would entail rerouting of request messages to a queue established for the new service. The

request and return messages’ payload needs to be analysed and possibly changed to suit the
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Figure 2.8: Asynchronous message exchange

new service. In general, the looser coupling allows for more flexibility regarding the delivery

model. In other words, the new service might come from a business partner without the need

for synchronism. However, still some degree of influence over the integration is necessary, as

the payload can contain RPCs or ORB-calls. In this case, changes imply intimate knowledge

of the new service’s inner working. Problems might also arise if messaging systems from

different vendors (e.g., IBM, Tibco, Oracle) are used. This is due to a different (incompatible)

implementation of relevant integration aspects (e.g., exception handling, fault-tolerance, or

administration). Messaging is not flexible enough when Cloud-based services are involved.

Web Services

Web Services (WS) are a crucial part of a SOA. They are self-contained blocks of functionality,

i.e., applications, with a well defined interface expressed in a standard format (Ferreira 13). WS

are designed to provide services, which are requested and consumed by business processes or

other applications being part of the integration. Its general goal is to provide simple access to

application functionality for Enterprise Integration (Juric 07).

Its specific goal is implementation independence. Integration happens purely on the pay-

load level. It is achieved by means of standard data and data exchange formats, such as XML,

SOAP (Simple Object Access Protocol), or WSDL (WS Description Language). This is a
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further difference to the aforementioned technologies RPC and ORB. As XML is widely ac-

cepted, it can also bridge the heterogeneity gap among possibly incompatible messaging sys-

tems within and outside an organization (Roshen 09). This aspect is depicted in Figure 2.9.
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Figure 2.9: Asynchronous message exchange with message transformation (Ferreira 13)

Here, XML-based messages, respectively data within messages, are formally structured

within the source schema. Data can be nested. The structure is defined with XML Schema.

XML Schema defines the grammar, respectively structure of the XML-based data (Kale 14)

(cf., Fig. 2.10). Through transformation mechanisms, such as XSLT (Extensible Stylesheet

Language Transformation), the source schema can also be transformed into a target schema,

i.e., a different XML Schema. The latter may be needed as different applications (or Cloud-

based services) need different data structures. Integration, i.e., middleware, tools such as MS

BizTalk Server1 or Pentaho2 rely on these capabilities. After conceiving the target structure,

the target message is generated and sent to the target application for further processing.

WS involve three roles: (1) service provider, exposing the service by means of a network

accessible WSDL file, (2) service requester invoking the service through the WSDL file; and

optionally (3), a service registry, called UDDI (Universal Description, Discovery, and Integra-

tion) where service providers publish information about service capabilities and service inter-

face (Ferreira 13). The latter is needed if the service is not known per se but must automatically

be detectable. Inner-organizational use of WS however does not normally involve UDDI, as

location and nature of WS are known by the experts. It does not justify the costs involved in

operating a UDDI registry.

Ideally, however, if WS are defined by the above standards, other services can find and

invoke them automatically. More abstract services can be created on top of existing ones.

1http://www.microsoft.com/en-us/server-cloud/products/biztalk/
2http://www.pentaho.com/product/data-integration
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<?xml version=“1.0”?>

<CustomaryCreditRegister>

<Person>

<ID>458.5043.2033.99</ID>

<FamilyName>Smith</Name>

<FirstName>Adam</FirstName>

<Score>16</Score>

</Person>

<Person>

<ID> 348.5323.2376.45 </ID>

<FamilyName>Marx</Name>

<FirstName>Karl</FirstName>

<Score>85</Score>

</Person>

<Person>

<ID> 654.3756.8675.22 </ID>

<FamilyName>Buffet</Name>

<FirstName>Warren</FirstName>

<Score>1</Score>

</Person>

…

</CustomaryCreditRegister>

<?xml version=“1.0”?>

<xs:schema id=“CustomaryCreditRegister”>

xmlns:xs=http://www.w3.org/2001/XMLSchema>

<xs:element name=“CustomaryCreditRegister”>

<xs:complexType>

<xs:choice minOccurs=“0” maxOccurs=“unbounded”>

<xs:element name =“Person”>

<xs:complexType>

<xs:sequence>

<xs:element name=“ID“ type=“xs:string“/>

<xs:element name=“FamilyName” type=“xs:string”/>

<xs:element name=“FirstName” type=“xs:string”/>

<xs:element name=“Score“ type=„xs:=“decimal“/>

</xs:sequence>

</xs:complexType>

</xs:element>

</choice>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 2.10: Sample XML file (left) and corresponding XML schema definition (XSD) file (right)

This ability to aggregate functionality into a higher-level task is called service composi-

tion (Ferreira 13). Thereby, an important element is the above mentioned WSDL. It is based on

XML with a predefined structure. It includes, but is not limited to, XML Schema. Figure 2.11

depicts this structure.

In the <types> section, the data structure is defined. Here, the above mentioned XML

Schema elements are used:

<wsdl:types>

<xs:schema elementFormDefault="qualified"

targetNamespace="http://creditregister.org/">

<xs:element name="getScoreFromCreditRegister">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="1" maxOccurs="1"

name="personID" type="xs:string" />

</xs:sequence>
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ServiceServiceService
service

Endpointendpoint

Service
binding

EndpointOperationoperation

EndpointOperationfault

interface

EndpointEndpoint

EndpointOperationfault

operation

EndpointMessage ref

EndpointFault ref

message ref

fault ref

types

EndpointOperationelement declaration

EndpointOperationtype definition

Figure 2.11: WSDL elements (Fensel and Bussler 02)

</xs:complexType>

</xs:element>

<xs:element name="scoreResult">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="1" maxOccurs="1"

name="creditScore" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</wsdl:types>

In the <messages> section, the actual messages, which use the above data structure, are de-

fined. Assumed in the below example is the transmission protocol SOAP. There is one request

and one response from the web service:

<wsdl:message name="getScoreFromCreditRegisterSoapIn">
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<wsdl:part name="parameters"

element="tns:getScoreFromCreditRegister" />

</wsdl:message>

<wsdl:message name="getScoreFromCreditRegisterSoapOut">

<wsdl:part name="parameters"

element="tns:scoreResult" />

</wsdl:message>

The <interface> element defines the actual WS. It groups together operations that the WS

can perform. One or more of the above defined messages are grouped within an operation. It

defines the chronological interaction patterns per operation.

<wsdl:interface name="getCreditScore">

<wsdl:operation name="getScoreFromCreditRegister">

<wsdl:input message="tns:getScoreFromCreditRegisterSoapIn" />

<wsdl:output message="tns:getScoreFromCreditRegisterSoapOut" />

</wsdl:operation>

</wsdl:interface>

The <binding> element relates the above defined interface (including operations) with spe-

cific transport protocols. Several bindings can exist. For example, one binding might be for

SOAP/HTTP with no data encryption for the intranet, and another for SOAP/HTTPS for access

from the Internet.

Eventually, the <service> element contains the actual URL (end point) for each binding

defined above. The interaction is initiated when a service requester (application) sends appro-

priately structured requests to those URLs, representing the WS hosting machines. An example

of a SOAP request and the response is given below. They are based on above defined WSDL

specifications.

POST /url HTTP/1.1 Host: www.creditregister.org Content-Type:

application/soap+xml; charset=utf-8 Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
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<soap:Body xmlns:m="http://www.creditregister.org/Score">

<m:getScoreFromCreditRegister>

<m:personID>458.5043.2033.99</m:personID>

</m:getScoreFromCreditRegister>

</soap:Body>

In the example, the SOAP request sends a person <ID> to the WS address, which is sup-

posed to return the credit <Score> for that person. It invokes the operation <getScoreFrom-

CreditRegister>. The SOAP reply contains the score.

HTTP/1.1 200 OK Content-Type: application/soap+xml;

charset=utf-8 Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.creditregister.org/services/Score">

<m:ScoreResult>

<m:creditScore>16</m:creditScore>

</m:ScoreResult>

</soap:Body>

</soap:Envelope>

As software providers generally support the WS standard, it further increases integration

flexibility and automation for organizations. Based on XML, services’ access interface are

described in a common way, which is intelligible to human experts. Independently of im-

plementation languages and disparate middleware technologies (Chen et al. 08), it allows for

defining an exchange of complex data structures among applications (Roshen 09). Messages

can also be bound to different transport protocols.

Despite those advantages regarding flexibility, WS adhere to the point-to-point integration

style. This is different from Messaging. Pure WS integration is thus not scalable as long as it

cannot be automated. WS also presuppose equal transport protocols and compatible message

structure between requesting and responding application.
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Running example: WS rely on XML. The replacement of the credit rating service with a

more sophisticated one would entail analysis and possible restructuring of the request mes-

sage, including data structure and transport protocol. Obviously, this depends on the new

service’s WSDL file. It defines how to access the service’s functionality (through <inter-

face><operation><message><types>). Thereagainst, if both, old and new service have the

same interface structure, replacement means only redirecting requests to the new service’s end

point URL. Integration flexibility clearly increases and allows easy access, even if the WS is

Cloud-based.

Enterprise Service Bus

Beside the aformentioned WS, Enterprise Service Bus (ESB) represents the second central part

of a SOA. It unites the benefits of both, WS and Messaging. It thereby eliminates the above

described WS heterogeneity problems, namely protocol and message format mismatch. The

principle setup of an ESB is sketched in Figure 2.12.

Through it, services communicate with each other in a scalable fashion. Application logic

accessed through the service interface consumes or provides services without knowing whether

the connection is direct or mediated through the ESB (Kale 14). Furthermore, an ESB contains

a routing and rules engine with which expert users define and operate the flow of messages,

either asynchronously or synchronously. It is shown in Figure 2.13. In a) messages are enriched

with external data, in b) messages are split, in c) different messages are merged into one before

proceeding.

Clearly, an ESB represents the most versatile integration technique within the realm of cur-

rent state-of-the-art enterprise application integration. It is less about coding applications so

they can “talk” to each other (such as with RPC or ORB) than it is about configuring document

structures and exchange patterns (Kale 14). It also transcends proprietary vendor-driven tech-

nologies, as organizations demand for standards to cope with a multitude of home-grown and

vendor technologies and standards. As (He and Da Xu 14) conludes, ESB and WS, being the

cornerstones of SOA, offer a promising framework for flexible enterprise integration.

However, the features of an ESB (e.g., transformation, mediation) are designed and oper-

ated by human experts. They implement message processing (i.e., routing, joining, filtering,

resequencing, etc.) with a certain degree of flexibility (cf., (Kress et al. 13) for further details).
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Figure 2.12: Principle ESB architecture, different protocols for transport and data structure can be
used (adapted from (Fensel and Bussler 02)

This is achieved by means of simple decision logic based on content, mostly header informa-

tion. In other words, within predefined limits, the ESB automatically “adapts” its operations.

All possible services, end points, and exchange activities have to be foreseen and captured from

the start though. This usually happens through event-condition-action rules. Consequently,

new services (on-premise or Cloud-based) or new business activities, which may warrant new

exchange activities, are not automatically accounted for or incorporated.

Running example: ESB supports WS and transformations & mediation. The replacement of

the credit rating service with a more sophisticated one would also entail analysis and possi-

ble restructuring of the request message. This time, however, it is done within the ESB. The

requesting service does not need to be changed. Flexibility further increases, notwithstand-

ing the service’s delivery mode (e.g., Cloud-based). However, automation within the ESB is

preconfigured by human experts. There is also a dependency on the ESB as a single point of

failure.
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Database

a) b) c)

Figure 2.13: Different data handling features of ESBs (Roshen 09)

2.4.3 BPI

The ESB focuses on message processing, e.g., transformations, among services and applica-

tions with different data structures or communication protocols. In other words: message in,

message out. It is also adequate for handling large volumes of messages exchanges among ser-

vices (Fasbinder 08). However, those services are generally stateless (Kress et al. 13). Each

service invocation and operation is done as if it were the first one. No memory of its state is

retained. An ESB is thus not adequate to orchestrate complex work flows representing business

processes (Kress et al. 13). As those are oftentimes long running, integration techniques ought

to account for the state in which a process is at a certain moment. It must allow for uniquely

identifiable process instances. Only then, completion can be assured, or faults can be handled,

such as by roll backs to previous states.

It is accomplished by a further layer, which sits on top of XML, WS, and ESB, namely

BPEL (Business Process Execution Language), depicted in Figure 2.14. Specifically, BPEL

(i.e., the BPEL engine) stores the state of each process instance in a database. It assures that

execution failures do not cause inconsistencies of the process instance’s inner state (Pasley 05).

As it provides recovery options for these cases, the underlying WS can remain stateless and

light, focusing only on documents and data.
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Figure 2.14: SOA-centric BPI (adapted from (Pasley 05), (Silcher et al. 12))

Service Composition

BPEL is a programming language, based on XML. It is geared towards business processes

(Roshen 09). BPEL guides the concerted operations of multiple Web Services (Cruz-Cunha 09).

This is called Orchestration. It describes how services interact at the message level. It in-

cludes the business logic and execution order of interactions under control of a single end

point (Babu and Darsi 13). It uses and extends WS-techniques, such as WSDL, to specify the

business process’ automatic, stateful execution. From the position of a requesting client, a

BPEL - process appears as a standard WS with a predefined <interface>. It is considered a

composed WS (cf., Fig. 2.15).

Following (Juric 07), through BPEL-enabled WS composition it is possible to modify busi-

ness processes quickly and therefore provide support to changed requirements faster and with

less effort.

BPEL structure

A BPEL process itself is a container where relationships can be declared. It includes external

partners, process data, handlers for various situations, and executable actions (Cruz-Cunha 09).

The container is represented by the <process> element1. It has a name attribute which uniquely

identifies the process. It also defines name spaces referred to throughout the declaration.

1An exhaustive description of BPEL is outside the scope of this work. Only relevant aspects concerning the
couple flexibility/automation are mentioned and discussed. For further details, cf., (Roshen 09).
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Figure 2.15: Service composition through BPEL (adapted from (Ferreira 13))

<process name="loan"

targetNameSpace=http://example.com/bpel/loan"

xmlns=

http://schemas.xmlsoap.org/ws/2003/03/business-process/

xmlns:bpws=

http://schemas.xmlsoap.org/ws/2003/03/business-process/

xmlns:...

The <partnerLink> element englobes all WS the process interacts with, and also the process-

requesting WS, i.e., the client. Individual WS are specified within the subelement <partner-

Links>. The latter also contains information on the specific roles of the respective WS. In the

example below, three WS are defined, one requesting client WS and two provider WS, such

as for providing third-party information on a person’s solvability (score), and for providing the

loan approval (for example based on the score, but combined with other criteria).

<partnerLinks>
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<partnerLink name="client"

partnerLinkType="bank"

myRole="bankLoanService"

partnerRole="bankLoanServiceCustomer"/>

<partnerLink name="creditRegistrySwitzerland"

partnerLinkType="creditRegistry"

myRole="creditRegistryCustomer"

partnerRole="creditRegistryScoreProvider"/>

<partnerLink name="loanApprovalBankInternal"

partnerLinkType="bankInternal"

myRole="loanApprovalBankInternalCustomer"

partnerRole="loanApprovalBankInternalProvider"/>

</partnerLinks

The <variables> element defines all variables used during the process. Normally, for each

message sent to or received from a WS a variable is defined. The declaration is based on XML

Schema.

<variables>

<variable name="loanRequest" type="xsd:string"/>

<variable name="creditScoreRequest" type="xsd:string"/>

<!-- sends request with person ID (cf., Fig. 2.10) -->

<variable name="creditScoreResult" type="xsd:decimal"/>

<variable name="loanApprovalRequest" type="xsd:decimal"/>

<variable name="loanApprovalResult" type="xsd:boolean"/>

</variables

The main part of the BPEL declaration starts with the <sequence> element. It specifies the

order in which the partner WS are invoked. Specifically, the first <receive> element is used

as initial request from the process’ client. The <assign><copy> elements prepare the input for

the next WS. The <invoke><receive> elements define the message flow. The last <invoke>

element returns the result of the process to the requester WS, namely “client.”

<sequence>

<receive partnerLink="client"

interface="loan"
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operation="provideLoan"

variable="loanRequest"

createInstance="yes" />

<!-- process invocation -->

<assign>

<copy>

<from variable="loanRequest" /> <!-- person ID -->

<to variable="creditScoreRequest" />

</copy>

</assign>

<invoke partnerLink="creditRegistrySwitzerland"

interface="getCreditScore"

operation="getScoreFromCreditRegister"

inputVariable="creditScoreRequest"

<!-- requesting score -->

<receive partnerLink="creditRegistrySwitzerland"

interface="getCreditScoreCallBack"

operation="getScoreFromCreditRegisterCallBack"

variable="creditScoreResult"

<!-- receiving score -->

<assign>

<copy>

<from variable="creditScoreResult" />

<to variable="loanApprovalRequest" />

</copy>

</assign>

<invoke partnerLink="loanApprovalBankInternal"

interface="loanApprovalBankInternal"

operation="getApprovalFromBankInternal"

inputVariable="loanApprovalRequest"

<!-- requesting loan approval, input is the score,
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possibly further enriched with internal data -->

<receive partnerLink="loanApprovalBankInternal"

interface="loanApprovalBankInternalCallBack"

operation="getApprovalFromBankInternalCallBack"

variable="loanApprovalResult"

<!-- receiving decision -->

<invoke partnerLink="client"

interface="clientCallback"

operation="clientCallback"

inputVariable="loanApprovalResult" /

<!-- return result to client through call back -- >

</sequence>

</process>

BPEL’s flexibility

Through BPEL, new processes can quickly be assembled from existing WS and executed.

Clearly, it is a more agile method than hard-coding processes (Roshen 09). However, BPEL

follows an imperative programming language paradigm (Van Der Aalst et al. 03). It focuses

on how the program operates. It defines sequences of commands for the computer to perform,

including the exact definition of parameters, variables, sequence of activities, and constituent

WS. In that sense, BPEL offers close control and communication to workflow engines. How-

ever, it results in a rigid modeling experience. It can be cumbersome and tedious for the human

expert (Tan and Zhou 13). For this reason, (Kapuruge et al. 11) argue that BPEL actually still

lacks flexibility to adapt to changing business requirements. The authors advocate enhance-

ments to to improve flexibility.

However, (Regev et al. 07) state that too much flexibility, that is, numerous modifications,

could impair BPEL runtime stability. Clearly, it applies (1) to the executable process itself,

and (2) to the constituent WS. First, a process might be impacted by changes to WS, e.g., its

data structure. It could break due to subsequent data inconsistencies. After all, WS are self-

contained entities, oftentimes beyond technical or functional control of a single organization.
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Second, WS might be impacted by changes to the BPEL-process (e.g., invocation load). It

could cause WS outages, having repercussion on other processes the WS participates in.

Therefore, (Kapuruge et al. 11) proposes to explicitly capture allowable interactions and

mutual obligations among the service providers of a composed WS. It is realized by an explicit

representation of service relationships. The authors introduce behavior terms, grouping rele-

vant interactions and constraints together. Those serve as boundaries for safe modifications and

are made available to the BPEL-engine for automatic checks. Following (Kapuruge et al. 11),

more controlled flexibility can be achieved.

To us, the approach seems valid as long as the set of WS constituting the process is stable.

Well-established ties among participating organizations need thus to exist. Otherwise, the ad-

ministrative overhead, namely negotiating and operating boundaries for each new constituent

WS, might outweigh the technical benefits of the approach.

a)

allowed

optional

forbidden

b) c)

Flexibility

(what is possible)

Figure 2.16: Imperative vs. Declarative: a) mandatory and optional constraints b) possi-
ble behavior of imperative approaches c) possible behavior of declarative approaches (adapted
from (Van Der Aalst et al. 03))

In (Van Der Aalst et al. 03), a declarative approach to process design is used, which is

based on constraints: anything not forbidden is allowed. It is in contrast to BPEL’s imperative

nature. It is shown in Figure 2.16.
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The oval depicted in b) represents the boundaries of BPEL-based process flexibility.

Every contingency must be predefined. In other words, all possible execution paths and

decision points would need to be incorporated at design time, using an inside out style

(Van Der Aalst et al. 03). This is also true for the aforementioned behavior terms. The frame

shown in c) represents an outside in style of modeling. Everything that does not violate the

mandatory (i.e., forbidden) constraints can be executed. Optional constraints can become vio-

lated with a warning message.

The authors claim that it is much more flexible to allow unless explicitly forbidden, instead

of forbid unless explicitly allowed. They consider though that the approach may not be suitable

for strictly procedural processes. It might be easier to just describe, e.g., with BPEL, what

should happen rather than describing the constraints that should be satisfied.

Running example: BPEL allows for service composition. The replacement of the credit rat-

ing service with a more sophisticated one would entail analysis and possible restructuring of

the composition instructions, namely the BPEL file. It pertains to variables, variable assign-

ments, interface structures, operations, and partnerLinks. From a pure point-to-point integra-

tion perspective, BPEL therefore seems less flexible than WS. However, as a defacto standard

for automatic stateful process execution, BPEL cannot directly be compared to WS, as it is not

an integration technique per se. However, BPEL also presupposes human experts to assess the

structure of new services to be used within a process. With many heterogeneous Cloud-based

service offerings to choose from, the process file might either need constant modifications, or

more appropriate services are just not used due to high adjustment costs.

2.4.4 SOA & BPI and Cloud

The approaches from (Van Der Aalst et al. 03) and (Kapuruge et al. 11), depicted in Section

2.4.3, are exemplary and similar to those presented in (Reichert and Rinderle-Ma 06) (de-

sign principles for adaptive service flows), (Liu et al. 07) (declarative approach to fault tol-

erance), (Koning et al. 09) (extending BPEL with variation points to account for WS vari-

ability), (Krizevnik and Juric 12) (automatic data synchronization for long-running processes),

or (Domingos et al. 13) (global exception handling through process-external context data): To

achieve more flexibility, they presume technical authority or, at least, influence over the con-

stituent parts of a process. As mentioned in Section 2.2.2, this premise does not hold for

independent Cloud-based services. Let’s remember that, to us, services are not adapted to fit
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integrations. They shall automatically be replaced by more suitable ones based on changing

business requirements.

In (Geebelen et al. 08), the authors also recognize this problem. They state the indepen-

dence of third-party services and the possibility of unpredictable behavior, when assembled into

business processes. The authors advocate the usage of a generic BPEL master processes and

template-based BPEL fragments. The master process describes implementation independent

abstract functionality. A template library contains combinations of BPEL activities that fulfill

common functionalities. A controller uses both, master process and templates to instantiate

executable BPEL processes. To this end, contextual parameters are used, such as the shortest

response time. These parameters are delivered to the controller as business requirements (cf.,

Fig. 2.17).

Template Controller

Template library

Security: Password x1

Security: Certificate x2

Billing: Fixed z1

Billing: Duration z2

Broker Service: Type 1 y1

Broker Service: Type 2 y2

Logging u

Parameter

Database

Response Time y1:100 ms

Response Time y2:30 ms

Billing z1: 1000 CHF

Billing z2: 0.1 CHF / min

Master BPEL Process

Security: x

Broker Service: y

Billing: z

Specific Executable BPEL Process

Security: Password x1

Broker Service: Type y2

Billing: Fixed z1

1

2a

2b

2

3

Figure 2.17: Template framework (Geebelen et al. 08)

The authors do not explicitly mention applicability agnostic to the delivery model, i.e., on-

premise or Cloud-based. Nevertheless, despite being very exploratory, the idea seems closer to

what we seek in terms of automation and flexibility than the sources discussed in Section 2.4.3.

A drawback we perceive, however, pertains to the context data for template selection. Those

are simple non-functional parameters such as pricing or performance. As mentioned in Sec-
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tion 2.1, those can easily be extracted from simple WS and compared for selection. Already

then, we claimed that this is not sufficient for an intelligent SSC as it needs to compare richer

information, representing enterprise-scale services, such as SalesForce.

A similar approach is depicted in (Kim et al. 12). The authors propose virtual services

defined as abstracted representation of a service. Where normal WS-BPEL processes need

detailed WSDL specifications, virtual services specify a minimal set of information required

for identification and assessment. The <virtualInvoke> element indentifies the actual service

corresponding to a virtual service (cf., Fig. 2.18).

<receive/>

<invoke/>
operation1

<virtualInvoke/>
virtualOperation2

<virtualInvoke/>

<reply/>

BPEL process Virtual Service Coordinator

Identify service

Select service

Invoke service UDDI – based

service discovery

Service Ontology

Net

Partner services

1

2

3

4

Figure 2.18: Virtual Services Orchestration Framework (Kim et al. 12)

The BPEL process is executed. If the <virtualInvoke> element is reached, the coordinator

is triggered (1). It identifies potential candidates based on the virtual service’s minimal de-

scription, namely <providerInformation>, <name>, <description>, <keyword>, <input>, and

<output>. The search is performed in a UDDI registry (2). From the identified services, the

one with the shortest ping time is selected (3). The service is invoked as part of the BPEL

process (4).

Interestingly, the service identification is performed with help of an ontological, that is,

semantic description. The authors justify this approach with the UDDI registry’s insufficient
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native search capabilities. Only syntactic keyword matching is provided. They use a semantic

service discovery mechanism based on an OWL-S service ontologies1. Unfortunately, the au-

thors remain unclear as to how this is achieved beyond what still seems to be simple syntactic

matching, such as shown in Figure 2.19.

<virtualInvoke name = ”sophisticatedCreditScoringService”>

<providerInformation = “creditRegistrySwitzerland” />

<name = “getCreditScore” />

<description = “most reliable estimation of solvability” />

<keyword = “Loan, Credit, Solvability, Score” />

<input name = “creditScoreRequest” type= “xsd:string” />

<output name = “creditScoreResult” type= “xsd:decimal” />

</virtualInvoke>

<profile:Profile rdf:ID = ”…”>

<profile:serviceName>…</profile:serviceName>

<profile:serviceContact>…</profile:serviceContact>

<profile:serviceClassification>…</profile:serviceClassification>

<profile:serviceCategory>…</profile:serviceCategory>

<profile:hasInput>…</profile:hasOutput>

<profile:hasOutput>…</profile:hasOutput>

<profile:hasPrecondition>…</profile:hasPrecondition>

<profile:textDescription>…</profile:textDescription>

<profile:effects>…</profile:effects>

</profile>

Figure 2.19: Mapping from Virtual Service to OWL-S (adapted from (Kim et al. 12))

The above sources present ideas to render automatic service composition more flexible.

The focus is easy reconfiguration of business processes. Thereby, technical control over con-

stituent services is not needed to integrate them. This is in line with our claim that services are

a given to the integration problem rather than an outcome (cf., Sect. 2.2.2). Service selection

and integration happens by means of “either it matches or it does not.” However, the matchings

presented are trivial.

Running example: From an automation perspective, the replacement of the credit rating ser-

vice with a more sophisticated one seems easiest so far in both above described scenarios (with

1: (Geebelen et al. 08), 2: (Kim et al. 12)). They depict an abstract part, i.e., master process

1This is discussed in more details in Section 3.3.3.
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(1) or virtual service (2). It is filled with functionality, i.e., templates (1) or specific WS (2). It

is based on context data, i.e., response time or minimal service description & ping time (1,2).

Eventually, the systems accomplish the above automatically through some form of com-

parison, e.g., min(response time) or min(ping time). However, we think that exactly here is the

problem. What happens if the more sophisticated credit rating service uses the same signature

as the old one? In other words, the requester still sends a personID and is still returned a score.

How does the system know that the new service has a much more advanced, i.e., reliable, scor-

ing algorithm implemented? Clearly, a trivial matching, such as based on the above described

response or ping time, cannot be the answer. Matching should rather be based on functional

aspects.

2.5 Discussing the gap

From the above review, we can summarize that there is wide-spread consensus that flexibility

of integration techniques is of utmost importance in nowadays organisations. The evolution

of SOA bears witness of this fact. Research in this area condenses around the notion of stan-

dardization, service, loose coupling, message exchange, and reusability. XML and derived

techniques, such as BPEL, allow organizations to deal with reconfiguring systems rather than

constantly having to develop new ones. The ultimate goal is to quickly and automatically

support changing business needs.

To a growing extend, this must include exposing services to external organizations. If

compared to tight coupling RPC or ORB, it allows for relatively quick setup, but also cutback,

of shared processes and enterprise collaboration. However, it still presupposes technical control

or at least influence over the services involved (cf., Sect. 2.4.3). Automation therefore is fairly

restricted as contingent integration scenarios must be negotiated and implemented. Clearly, it

cannot be applied to Cloud-based third-party service (i.e, SaaS) offerings, as they may come

(and go) unforeseen.

In Section 2.4.4, ideas are presented to address this issue. Although promising to us, they

however use almost trivial selection mechanisms. We claim this to be insufficient in a world

with a proliferating number of Cloud-based services. Those will be simple (e.g., weather fore-

cast), but in our point of view also feature-rich (e.g., Salesforce (SalesForce.com 15), Akamaii,

ServiceNow).
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A convincing case for the latter is made in (Nassif and Capretz 13). The authors rightfully

argue that customers cannot chose the features of current Cloud-based, i.e., SaaS-based, enter-

prise applications they want. They rather have to subscribe to, and pay for, a specific edition,

even if certain features are not used. The authors thus suggest that the features of the SaaS

applications shall be converted into SOA-based services (cf., Fig. 2.20). They present a 6-

stage model to achieve this, including (1) the Determination of SaaS Maturity Level (DSML),

(2) Nomination of Application for SOA (NAS), (3) Feature identification, (4) Nomination of

features, (5) Service extraction, and (6) Service enrichment.

1. DSML

2. NAS

3. Feature

identification

4. Nomination of

feature

5. WS extraction

6. Service

enrichment

Cloud (SaaS) SaaS-to-SOA SOA

Service provider

Find

Publish Bind

Broker
Service

requester

Figure 2.20: Transition from SaaS to SOA (adapted from (Nassif and Capretz 13))

When applied, SaaS providers can publish their services to a broker platform. They could

also take the role of a service requester to acquire complementary services from other providers.

It may increase the value of own offerings. All other customers acquire specific services from

all SaaS providers to fine-tune existing, or even create new, business models of their own.

In such a scenario, one can thus expect to have many competing services with similar

functionality because of the long-term zero-profit equilibrium phenomenon, described in Sec-

tion 1.1. Clearly, service selection and integration cannot be based on simple performance

values anymore, let alone be done by human experts. It must rely on techniques better captur-

52



2.5 Discussing the gap

ing a service’s functionality. It would include to automatically compare, select, and integrate

large amounts of services, based on their description. In the next chapter, we present promi-

nent semantic integration techniques, such as SAWSDL, OWL-S, and WSMO. We discuss their

ability to provide these features, which are beyond the above described techniques.
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Semantic integration

From the prior chapter, we learned that Information Systems (IS) have grown from being in-

traorganizational and tightly coupled to interorganizational with interactions of multiple sys-

tems. Correlated with that evolution towards loosely coupled systems and interoperability is

the need for more explicit, machine-interpretable semantics (Obrst 03).

Indeed, Web Service (WS) technologies alone are not sufficient to develop flexible and

sophisticated interoperation, i.e., business processes. This is due to the degree of heterogene-

ity, autonomy, and distribution of Web Services (WS) (Cardoso and Sheth 05). Although they

support interoperability between diverse application development platforms, they still require

much human interaction (Fensel and Bussler 02, Fensel et al. 11). This limits the scalability of

SOA-based solutions and greatly cuts the added value envisioned. In order to automate tasks

such as reliable WS discovery, selection, and integration, semantic descriptions of WS are thus

needed (Fensel et al. 11).

Throughout this chapter, we thus explore semantic descriptions in more details. We in-

troduce the concept of ontologies as an indispensable backbone. Thereafter, main specific

research venues in the field of semantic integration are presented, such as SAWSDL (Semantic

Annotations for WSDL and XML Schema), OWL-S (Web Ontology Language for Web Ser-

vices), and WSMO (Web Service Modelling Ontology). We discuss the findings in light of

our proposed intelligent SSC (Service Selection and Integration). We also come back to our

question yet to be answered, namely how the system “knows” that a service is more appropriate

than another one.

In light of our research topic, however, we start by discussing the semantics of semantics.

We think this to be important in order to better position our research.
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3.1 The semantics of semantics

Interaction takes place when meanings between entities are exchanged through a common sys-

tem of signs. The study of those meanings is addressed by semantics (Britannica 15). It deals

with linguistic statements, either in purely syntactic systems (Formal Semantics) or in natural

languages (Cognitive Semantics), e.g., Swiss French (Cherry 67). Formal Semantics pertains

to programming languages or standards such as XML. It avoids questions about “meaning”

and “truth” with respect to a real world. Cognitive Semantics concerns statements which can

only be evaluated and understood under contextual considerations (e.g., psychology or anthro-

pology).

For example, an ontology is an expression of Formal Semantics. It is based on logic which

comprises the principles of formal reasoning (Antoniou and van Harmelen 08). Thereby, the

meaning of logical statements does not need empirical validation, or the means to do it. The

validation process is done by automatic reasoning algorithms (i.e., logical parsers). It ideally

takes a finite amount of steps. If it does not, the reasoning process, i.e., the establishing of a

statement’s validity, is said to be undecidable.

Eventually, these aspects can be used to define more sophisticated rules than possible with

purely syntactic techniques. Information systems could thus make decisions and select courses

of actions. They would follow the principle of if → then, such as loyalCustomer(X) → dis-

count(X,5%). For simple relationships, inferences are straightforward. In larger sets of state-

ments, automatic inferences become more demanding. It might lead to the impossibility to

infer conclusion. Thus, there is a trade-off between computational efficiency and expressive-

ness (Antoniou and van Harmelen 08).

Cognitive semantics on the other hand centers around knowing. Knowing something is

to have access to the meaning of what is to be known (Cherry 67). If humans have to process

incoming statements, they engage into a process of accessing an existing idea, i.e., the signified,

that comes to mind in order to be matched against the statement, i.e., the signifier. Formal

semantic systems (e.g., programming languages, applications) alone are not able to accomplish

this assessing task (Harnad 03). They are not able to extract meaning from the statements. It

implies that Formal Semantics still only is syntactic manipulation. It does not extend to levels

of meaning.

It becomes even clearer when looking at Searle’s famous Chinese Room experiment

(Searle 80), revisited in (Rodríguez et al. 12): In a thought experiment, a person, not knowing
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Chinese, manipulates Chinese character strings with syntactic rules written in English. With

these rules, the person is able to answer questions asked in Chinese. For people outside the

room, the person appears to understand Chinese. However, the person only uses formal fea-

tures of the manipulated strings. One does not care about the meaning that could be associated

with the strings.

For the authors, the argument shows that sophisticated applications, i.e., formal-semantic

systems, may appear to be intelligent1. In reality though, there is no grasp of the semantic

contents of the symbolic structures manipulated.

Clearly, the above notions of Semantics are opposed. Formal Semantics claims to en-

able machines to understand and, therefore, potentially satisfy user requests, by processing

the meaning of data (Fensel et al. 11). Through well-defined meaning systems, it can improve

current integration technologies. It shall further increase automation and accuracy in various

aspects such as information search, extraction, and integration (Berners-Lee et al. 01). In this

school of thought, machines become thus proactive agents. These agents extract and interpret,

rather than just exchange and render information for human users (Fensel et al. 11). Therea-

gainst, Cognitive Semantics states that this cannot be done in a satisfactory way. True knowing

and interpreting needs more than just manipulating arbitrary symbolic shapes.

When exploring means towards more intelligent SSC, clearly, these considerations cannot

be ignored. During the remainder of this document, our discussion will thus take it into account.

3.2 Semantic knowledge representation

In the following sections, we introduce the concept of ontologies. They are used for formally

encoding knowledge. As stated before, ontologies belong to the formal-semantics paradigm.

Despite its described shortcomings, in Section 3.3, we will show its advantages for service

integration over standard syntactic approaches.

3.2.1 Ontologies

An ontology is a formal, explicit specification of a shared conceptualization (Studer et al. 98).

A conceptualization reflects the semantics of a specific universe’s underlying principles

1Provided that a conversation in natural language is considered intelligent.
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(Guarino et al. 09). Following (Genesereth and Nilsson 87), it is an abstract, simplified view of

the world1, henceforward called domain, that someone wishes to represent for some purpose.

Specifically, an ontology consists of (atomic or non-atomic) statements and relation-

ships among them. The statements denote concepts. These are also called classes, which

belong to the domain, and relationships, which typically express hierarchies of classes

(Antoniou and van Harmelen 08). Ontologies also include other statements, such as proper-

ties (x teaches y, where teaches corresponds to a binary predicate), value restrictions (only

faculty members may teach courses), disjointness statements (faculty and general staff are dis-

joint), specifications of logical relationships, between objects (every department must include

at least ten faculty members).

The notion explicit refers to an explicit definition of the classes, relationships and other

above mentioned statements. Formal implies that an ontology shall be machine readable.

Shared says that an ontology captures consensual knowledge (Niwattanakul et al. 07). It is

agreed-upon by a group, having an interest in formalizing a common understanding, e.g., com-

panies within the same supply chain.

Figure 3.1 shows an example ontology. It is aligned to the running example from Sec-

tion 2.4.1. It sketches elements pertaining, for example, to a financial service provider’s of-

fering. The elements, which describe a service named CreditChecking are bold-framed. An

extraction of the XML-based ontology file is presented below.

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

...

<Declaration>

<Class IRI="#CalculateInsolvencyRisk"/>

</Declaration>

...

<Declaration>

<ObjectProperty IRI="#uses"/>

1Note the semantic synonymity of universe and world.
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Figure 3.1: Example ontology (derived from running example)

</Declaration>

...

<Declaration>

<DataProperty IRI="#personID"/>

</Declaration>

...

<SubClassOf>

<Class IRI="#SetupPrivateScoring"/>

<Class IRI="#SetupScoring"/>

</SubClassOf>
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...

<SubObjectPropertyOf>

<ObjectProperty IRI="#usesCreditChecking"/>

<ObjectProperty IRI="#uses"/>

</SubObjectPropertyOf>

...

<ObjectPropertyDomain>

<ObjectProperty IRI="#has"/>

<Class IRI="#Services"/>

</ObjectPropertyDomain>

...

<DataPropertyDomain>

<DataProperty IRI="#personID"/>

<Class IRI="#CreditCheckingInputData"/>

</DataPropertyDomain>

...

<DataPropertyRange>

<DataProperty IRI="#personID"/>

<Datatype abbreviatedIRI="xsd:string"/>

</DataPropertyRange>

</Ontology>

3.2.2 Ontological languages

The above presented ontology is conceived with an ontological language. It allows users to for-

mulate the explicit, formal conceptualizations of the domain of interest. The main requirements

are (1) a well-defined syntax, and (2) a well-defined semantics allowing sufficient expressive
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power and efficient reasoning support (Antoniou and van Harmelen 09). Well-defined syntax

is a necessary conditions for machine-processing, similar to programming languages. Well-

defined (formal) semantics refers to subject-independent interpretations. It relies on predefined

inference rules established by logics. As mentioned before, formal interpretations are not sub-

ject to different points of view of different persons. They allow for automatic and tractable

reasoning, for example about class membership, equivalence of classes, consistency, or clas-

sification. Such inferences can be made mechanically. This is the great advantage over pure

syntactic systems, such as described in Section 2.4.

Terms

„ordinary“ Glossaries

ad hoc Hierarchies

Data Dictionaries

Thesauri

structured Glossaries

XML DTD

Principled, informal hierarchies

Database schemas

XML Schema

Data models

formal Taxonomies

Frames

Description logics

General Logic
Expressivity

Formalization

Formal ontologies

Metadata and
data models

Thesauri and
taxonomies

Glossaries and
Data dictionaries

(First-order,
Higher-order)

Figure 3.2: Syntactic and semantic data description formalisms (Rebstock et al. 08)

The formal semantics and reasoning is usually provided by mapping an ontology language

to a logical formalism (Antoniou and van Harmelen 09) (cf., Fig. 3.2, e.g., Description Logic).

However, the efficiency of automated reasoning depends on the richness of that formalism. If

it is unbound, such as for full first-order predicate logic1, it becomes too rich. The reasoning

task might thus lead to undecidability or at least to heavy computational costs.

The next subsection introduces OWL (Web Ontology Language), divided in OWL Full,

OWL DL (Description Logics), OWL Lite. They form a family of promising languages to

1The topic of logic is not within scope of this work.
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balance this trade-off. Each is mapped to a different logical formalism.

OWL Full

OWL Full and OWL DL (Allemang and Hendler 08) use all language primitives provided by

OWL. However, OWL Full allows to combine these primitives in arbitrary ways. For ex-

ample, primitives’ pre-defined meanings can be changed by applying the primitives to each

other. For example, in OWL Full, a cardinality constraint could be imposed on the class of

all classes. This limits the number of classes that can be described in any ontology. Thus,

OWL Full offers meta-modeling capabilities, but at the expense of computational tractabil-

ity (Antoniou and van Harmelen 09). The language is so powerful as to be undecidable, likely

disallowing complete and efficient reasoning (Motik 05).

Main language primitives are:

• Class elements

– Class: owl:Class

– Disjointness: owl:disjointWith

– Equivalence: owl:equivalentClass

– Most general class: owl:Thing

– Empty class: owl:Nothing

• Property elements (predicates)

– Object properties: owl:ObjectProperty (relates objects to objects)

– Data type properties: owl:DatatypeProperty (relates objects to data type values)

– Inverse properties: owl:inverseOf (isThaughtBy - teaches)

– Equivalent properties: owl:equivalentProperty (lectures in - teaches)

• Property restrictions

– Sub classes: rdfs:subClassOf, owl:Restriction, owl:onProperty, owl:allValuesFrom

(universal quantification) / owl:hasValue (singular proposition) / owl:someValuesFrom

(existential quantification)

– Minimum cardinality: owl:minCardinality
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– Maximum cardinality: owl:maxCardinality

• Special properties:

– Transitive property: owl:TransitiveProperty (is taller than)

– Symmetric property: owl:SymmetricProperty (has same height as)

– Functional property: owl:FunctionalProperty (exactly one unique value for an ob-

ject, e.g., age)

– Inverse functional property: owl:InverseFunctionalProperty (uniqueness, no two

objects have the same value, e.g., isEmployeeNumberOf )

• Boolean combinations of classes

– Complementarity: owl:complementOf (same as owl:disjointWith)

– Union: owl:unionOf

– Intersection: owl:intersectionOf

• Enumerations

– Element lists: owl:oneOf (defined on classes, e.g., daysOfWeek)

• Instances

– Class instance:

* <rdf:Description rdf:ID=“Bob“>

* <rdf:type rdf:resource=“#academicStaffMember“/>

* </rdf:Description>

– Different specific individuals: owl:differentFrom

– Pairwise difference of many individuals: owl:AllDifferent in concert with

owl:distinctMembers
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OWL DL

OWL DL is the most expressive decidable sub-language of OWL (Pan 09). It reestablishes

computational efficiency by restricting the usage of the language primitives. For example, it is

not allowed to apply them to each other to alter their intended meaning. Furthermore, any re-

source is allowed to be only either a class, a datatype, a datatype property, an object property, an

individual, a data value, or part of the built-in vocabulary (Antoniou and van Harmelen 08). It

follows that a class cannot be an individual, a property cannot have some values from a datatype

and some values from a class. This restriction is called vocabulary partitioning. Furthermore,

the partitioning must be stated explicitly. It is not allowed to have implicitly entailed classes as

would be possible within OWL Full. The restriction is called explicit typing. Property separa-

tion says that inverse properties, and functional, inverse functional, and symmetric characteris-

tics can never be specified for datatype properties (Antoniou and van Harmelen 09). Moreover,

no cardinality restrictions may be placed on transitive properties. Finally, anonymous classes

are only allowed in the domain and range of owl : equivalentClass and owl : disjointWith,

and in the range (not the domain) of rdfs : subClassOf .

OWL Lite

Within OWL Lite, most restrictions apply (Antoniou and van Harmelen 09). For example, it

excludes enumerated classes, disjointness, union, complement, hasValue statements, and arbi-

trary cardinality. Statements about equivalent classes cannot be made on anonymous classes,

but only between class identifiers. It is the easiest language to grasp and implement but has the

poorest expressiveness.

3.2.3 Ontology types

Ontologies are typically classified on their level of generality, respectively scope (Guarino 98,

Roussey et al. 11, Prestes et al. 13). This is depicted in Figure 3.3. The scope of a local on-

tology is narrower than the one of a domain ontology. The latter has more specific concepts

than a core reference ontology, which is based on fundamental concepts of a domain. Top level

(foundational) ontologies describe very general concepts like space, time, matter, object, event,

action, etc. They are independent of a particular problem or domain (Guarino 98).
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Figure 3.3: Ontology classification based on level of generality (Roussey et al. 11)

Top level ontologies

Top level ontologies are used to define others ontologies. They thus apply to various do-

mains. They can be compared with a meta model (Fonseca et al. 03). If more specific on-

tologies, such as for domains or core references, rely on the same foundational ontology,

they could more easily be integrated (Roussey et al. 11). An example is DOLCE (Descrip-

tive Ontology for Linguistic and Cognitive Engineering) (Borgo and Masolo 10). Follow-

ing (Borgo and Masolo 10, Roussey et al. 11), DOLCE describes particulars. Particulars are

entities which have no instance (as opposed to universals, e.g., properties, relations). Partic-

ulars can be physical objects (endurants), events (perdurants), qualities, and quales (quality

value). Endurants are entities enduring in time, e.g., physical or non-physical objects (social

or cognitive entities). Perdurants, e.g., actions, are entities that happen in time and in which

endurants participate. Endurants and perdurants have perceivable and measurable inherent

properties (qualities). These qualities take a value (quale) within regions of values which are

abstract.
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Core reference ontologies

Core reference ontologies can be viewed as mid-level ontologies, situated between top-level

and domain ontologies (Obrst 10). They reuse concepts specified by top level ontologies, but

add concepts and relations which are central to several (neighboring) domains (e.g., car, traffic,

aviation) (Prestes et al. 13). Thereafter, they can be referred to by those related domains.

General ontologies

General ontologies are not dedicated to a specific domain. Their concepts can be as general as

those of core reference ontologies. They might contain hundreds of thousands of concepts and

with millions of statements relating the concepts, thereby forming a general ontology whose

domain is consensus reality (Roussey et al. 11).

Domain ontologies

A domain ontology represents domain-specific knowledge (medicine, automobiles, etc.). Con-

taining domain-specific concepts and relationships, it is thus a specific thesaurus including

inference rules, which only apply in this domain (Kaiya and Saeki 06). It specializes the terms

introduced in the top-level ontology (Fonseca et al. 00).

Task ontologies

Task ontologies describe the conceptualization related to a generic task (Fonseca et al. 00).

They need to capture task decomposition, which includes control flow, and roles played by en-

tities from the domain in the fulfillment of the task (Martins and de Almeida Falbo 08). Specif-

ically, in (Mizoguchi et al. 95), four kinds of concepts are suggested to describe a task: (1)

generic nouns representing objects reflecting their roles in the problem solving process, (2)

generic verbs representing activities in the problem solving process, (3) generic adjectives

modifying the objects, and (4) other concepts specific to the task.

Application ontologies

Application ontologies represent a particular view on a domain. Therefore, they are difficult

to be shared due to lacking consensus (Roussey et al. 11). In (Fonseca et al. 00), this type of

ontology is a combination of a specific domain and a task ontology to fulfill a specific purpose.

66



3.3 Semantic integration techniques

The task ontology provides knowledge to achieve tasks, the domain ontology describes the

knowledge where tasks are applied.

3.3 Semantic integration techniques

Managing the evolution of IS, composed of loosely coupled services presents a great chal-

lenge (Lewis et al. 08). It is amplified by emerging technologies, such as social networks,

smart devices and cars, or else the Internet of Things (IoT) (El-Sheikh et al. 13). As intro-

duced in Section 1.1, IS thus operate in complex, dynamic environments. It entails frequent

new functional and interface requirements, or partner services, possibly withdrawn or modified

without the possibility to intervene.

In such an environment, with continuous changes in complex service compositions, knowl-

edge about individual services is crucial (Gonen et al. 15). Incomplete understanding might

lead to faulty integrations with uncontrollable ripple effects. As concluded in Section 2.5, it is

an unscalable (cognitive) challenge for human experts

Indeed, with hundreds of deployed WS, the task of manually searching and identifying ser-

vices that satisfy ever changing requirements for integrability can become extremely intensive

in manual labor, time spent, and risk of errors (Kourtesis and Paraskakis 10). It ideally war-

rants more system intelligence in the sense of identification and analysis of input followed by

synthesis of possible actions (Zdravković et al. 14).

Similar to Chapter 2, the following sections introduce the main semantic integration tech-

niques towards this ideal, namely SAWSDL, WSMO, and OWL-S. Again, we discuss them in

light of our running example, reiterated next.

3.3.1 Running example revisited

In Section 2.4.4, we have asked how the system “knows” that a service is preferred over another

one. The question could not be answered by selection and integration techniques discussed

in Chapter 2. The following sections introduce semantic techniques, supposedly in a better

position to do so. We thus adapt the running example presented in Section 2.4.1 to the semantic

approach. We use the simple ontology presented in Figure 3.1. We assume that it represents

a credit checking (scoring) service from a third-party provider (bold-framed elements) a bank

currently uses in its credit loan process. In Figure 3.4, we show a competitive third-party credit

checking service. It has the same setup as the current service, except it uses a new scoring
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algorithm with more reliable results (grey pane). Clearly, henceforward the bank would want

to use the new service.
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Figure 3.4: Ontology for a competitive credit checking service

We briefly discuss this challenge for each semantic integration approach presented below.

We start with SAWSDL.

3.3.2 SAWSDL

Semantic Annotations for WSDL (SAWSDL) is an extension to WSDL and provides a seman-

tic annotation mechanism. Whereas WSDL specifies how a message looks like, the SAWSDL

specifies what a message means. Specifically, it uses pointers to semantic concepts from within

the syntactic WSDL-based service description (Fensel et al. 11). Its major constructs are mod-

elReference and schemaMapping. The latter is split into liftingSchemaMapping and lower-

ingSchemaMapping (Fensel et al. 11, Wei et al. 11).

modelReference is used to point to semantic concepts. It can be used for <interfaces>, <op-

erations>, <faults>, as well as XML Schema <elements>, <complex types>, <simple types>
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and <attributes> (cf., example listing below). modelReference is typically used in automated

service discovery and composition. It is recommended by the SA-WSDL working group that

the reference contains an URI identifying the concepts in an external knowledge-representation

or term definition system (Lemcke 10). Cf., following example listing (Lausen and Farrell 07):

<wsdl:interface name="Order"

sawsdl:modelReference=

"http://example.org/categorization/products/electronics">}

<wsdl:operation name="order"

pattern="http://www.w3.org/ns/wsdl/in-out"

sawsdl:modelReference=

"http://www.w3.org/2002/ws/sawsdl/spec/ontology/

purchaseorder#RequestPurchaseOrder">

<wsdl:input element="OrderRequest" />

<wsdl:output element="OrderResponse" />

</wsdl:operation>

</wsdl:interface>

schemaMapping is used to specify data transformations between the XML data structure of

messages and an associated semantic model (Fensel et al. 11). liftingSchemaMapping trans-

forms XML data from a Web service message into a semantic model. loweringSchemaMapping

transform data from a semantic model into an XML message (cf., Fig. 3.5).

schemaMapping helps when data structure mediation is needed to support invocation of a

Web service. For example, a client may have first name and last name among its data. These

values need to be concatenated in the message to the Web service. A lowering schema mapping

would turn the client’s semantic data into XML while performing concatenation to produce the

full name (Lausen and Farrell 07).

SAWSDL by itself does not specify any actual types of semantics. It is agnostic to the

knowledge representation formalism one adopts for representing service characteristics.

Running example In the scenario described, we would have two competing services cold

and cnew. A client request (step 3, Capture personal information) would need to automatically

discover and use cnew instead of cold. To us, there are a number of considerations:

• In a WS-based environment, it cannot be assumed that the new service’s <interface>,

and consequently <operations>, <messages>, <types> are different from the old service.
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a b

Ontology Ontology

Figure 3.5: SAWSDL-based data lifting and lowering. a) for WS communication. b) for data
mediation

Although they are, e.g., due to a different backend processing, to a service requester they

might appear alike.

• The implied semantics of a service might be too specific or dynamically changing as to

be describable by domain or foundational ontologies as external semantic representation.

In turn, application ontologies might be too specific to support the service discovery. It

does not necessarily represent a shared view. For example, in the targeted services, there

might simply be no semantic correspondence, e.g., through concept subsumption, to the

requested terms.

• In any case, human experts would need to analyse the external ontology landscape to

identify appropriate ones. Iteratively, they need to recheck concepts, and possibly point

to new URIs.

In light of these points, a SAWSDL approach seems more appropriate within specific and

rather stable (closed) knowledge domains. For requester services, it implies the need to already

tune to the semantic descriptions, thus, the external ontological representations, probably used

by target services. To us, this makes the technique unsuitable for (open) environments with fast

changing semantics. It does not scale.
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3.3.3 OWL-S

OWL-S is a top level ontology for the description of semantic WS expressed in OWL. It defines

three central elements, namely ServiceProfile, ServiceGrounding, ServiceModel (cf., Fig. 3.6).

A service is declared by creating an instance of the Service concept (Burstein et al. 04).

Service

ServiceProfile

ServiceGrounding

ServiceModel

presents

(what it does)

describedBy

(how it works)

supports

(how to access it)

Figure 3.6: OWL-S Service Ontology (Burstein et al. 04)

ServiceProfile

The ServiceProfile describes what the service does by means of inputs, outputs, preconditions,

and effects (IOPEs). It is further detailed in Figure 3.7.

The service profile thus represents capabilities of a service (Fensel et al. 11). Specifically,

serviceName, textDescription, and serviceProduct provides a simple service description and

contact information of the service provider. Inputs, generated outputs, external conditions con-

straining the execution of the service, and effects (results) that change these conditions subsume

the functional aspects of the service profile. ServiceCategory categorizes the service. Servi-

ceParameter comprises a list of service parameters containing any kind of information (e.g.,

maximum response time, geographical availability, quality rating). Cf., following example
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ServiceProfile

hierarchical

relationship

property

relationship

class

Profile

anyUrl

anyUrl
serviceProduct

Process

ServiceCategory

ServiceParameter

taxonomy

Parameter

Precondition

Result

Input

Output

Figure 3.7: OWL-S Service Profile (Burstein et al. 04)

listing1:

<profile:serviceName>CreditChecking</profile:serviceName>

<profile:textDescription> ... </profile:textDescription>

<profile:contactInformation>

<actor:Actor rdf:ID="ContactXY">

<actor:name> ... </actor:name>

<actor:title> ... </actor:title>

<actor:phone> ... </actor:phone>

<actor:fax> ... </actor:fax>

<actor:email> ... </actor:email>

<actor:physicalAddress> ... </actor:physicalAddress>

<actor:webURL> ... </actor:webURL>

</actor:Actor>

1adapted from http://www.daml.org/services/owl-s/1.1/examples.html
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</profile:contactInformation>

<profileHierarchy:deliveryRegion rdf:resource=

"http://www.daml.org/services/owl-s/1.2/Country.owl#Switzerland"/>

<profile:serviceCategory>

<addParam:NAICS rdf:ID="NAICS-category">

<profile:value>

Consumer Lending

</profile:value>

<profile:code>

522291

</profile:code>

</addParam:NAICS>

</profile:serviceCategory>

...

<profile:hasInput rdf:resource= "http://www.creditregistry.com/

CreditChecking.owl#creditScoreRequest_In"/>

<profile:hasOutput rdf:resource="http://www.creditregistry.com/

CreditChecking.owl#getCreditScore_Out"/>

<profile:hasPrecondition rdf:resource="http://creditregistry.org/

CreditChecking.owl#personIDExists"/>

<profile:hasResult rdf:resource="http://creditregistry.org/

CreditChecking.owl#hasScoringResult"/>

In the listing, input, output, precondition, and effect refer to concepts encoded in some

ontology. Note, that these can be private, public, top level, domain-specific ontology, etc. It

is indicated by the prefix “#”. If a service requester seeks a certain service, it may now look

for semantic similarity of those concepts with the requested element. Specifically, this could

happen as follows (adapted from (Farrag et al. 13)): a requested concept is called CR and may

have three properties P1, P2, and P3 (e.g., label, relationship to another concept, data type). It

is compared against an advertised concept C in the service ontology. Relative to CR, C can

have four different positions in a concept hierarchy:

a) Identical relation: C and CR have the same properties

b) Super relation: C is a parent of CR.
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c) Sub relation: C is a child of CR.

d) Neighbor relation: C and CR have some common properties.

In Figure 3.8, these possibilities are shown. Depending on the requester’s preference, a

selection mechanism may thus screen several competing services and assign a ranking value

to each one, such that “identical” has the highest ranking, followed by“Super,” “Sub,” and

“Neighbor.”

a b c d

Figure 3.8: Concept matching (adapted from (Farrag et al. 13))

ServiceModel

The ServiceModel describes all the processes the service is composed of, how these processes

are executed, under which conditions they are executed. It answers the question, how the

service works (Farrag et al. 13) (cf., Fig. 3.9).

Atomic processes represent directly invocable operations. They are executed in a single

step and cannot be further refined (Fensel et al. 11). An atomic process takes an input message,

74



3.3 Semantic integration techniques

Process

Perform

Participant

xsd:string

Condition

Result

Parameter

Input

Output

Local

Atomic process

Simple process

Composite process

xsd:boolean

Control construct

Sequence Split Split-Join Any-order Choice

ServiceModel

Figure 3.9: OWL-S Service Model (Burstein et al. 04)

and returns an output message. They have an associated grounding to a service specification

(e.g., WSDL), so service requesters can construct input and output messages. Simple processes

also perform single-step executions. However, they do not have associated grounding and

are not invocable (Burstein et al. 04). The simple processes are used as wrappers, offering

specific ways to use an atomic process, or to simplify the representation of a composite process

for planning and reasoning purposes (Fensel et al. 11). Composite processes represent more

complex decomposable processes (composite or non-composite). The decomposition is defined

with control constructs (e.g., sequence). A composite process describes a behavior the client

can enact by sending and receiving a set of messages. Cf., following example listing1:

<process:ProcessModel rdf:ID="CreditChecking_ProcessModel">

<process:hasProcess rdf:resource="#CreditChecking_Process"/>

<service:describes rdf:resource="http://www.daml.org/services

/owl-s/1.0/CreditCheckingService.owl#CreditChecking"/>

1adapted from http://www.daml.org/services/owl-s/1.1/examples.html
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</process:ProcessModel>

<process:CompositeProcess rdf:ID="CreditCheckingProcess">

<process:composedOf>

<process:Sequence>

<process:components rdf:parseType="Collection">

<process:AtomicProcess rdf:about=

"#LoginCreditRegister"/>

<process:AtomicProces rdf:about=

"#getScoreFromCreditRegister"/>

</process:components>

</process:Sequence>

</process:composedOf>

</process:CompositeProcess>

<process:AtomicProcess rdf:ID="LoginCreditRegister">

<process:hasInput rdf:resource="#AcctName_In"/>

<process:hasInput rdf:resource="#Password_In"/>

</process:AtomicProcess>

...

<process:Input rdf:ID="AcctName_In">

<process:parameterType rdf:resource="http://www.daml.org/

services/owl-s/1.0/Concepts.owl#AcctName"/>

</process:Input>

<process:Input rdf:ID="Password_In">

<process:parameterType rdf:resource="http://www.daml.org/

services/owl-s/1.0/Concepts.owl#Password"/>

</process:Input>

...

Again, defined concepts may stem from some ontology. Different from the service profile,

the focus, here, is semantic execution support.
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ServiceGrounding

The ServiceGrounding describes how the service can be accessed. It specifies how the abstract

OWL-S service representations, i.e., service profile and service model, are mapped to the con-

crete service description elements, e.g., WSDL, required for interacting with the service (inputs

and outputs of an atomic processes) (Fensel et al. 11).

For the WSDL specification, the following grounding rules exist: OWL-S atomic process

→ WSDL operation, OWL-S input/output→ WSDL message, OWL-S input/output types→
WSDL extensible notion of abstract type, which can be used in WSDL message specifica-

tions (Fensel et al. 11).

Cf., example of the WSDL/OWL-S grounding in the following example listing1. It shows

grounding into the WSDL-based service described in Section 2.4.2:

<grounding:WsdlGrounding rdf:ID ="Grounding_CreditChecking">

<service:supportedBy rdf:resource="#CreditChecking"/>

<!--Collecton of all the groundings specifications-->

<grounding:hasAtomicProcessGrounding

rdf:resource=

"#WsdlGrounding_LoginCreditRegister"/>

<grounding:hasAtomicProcessGrounding

rdf:resource=

"#WsdlGrounding_getScoreFromCreditRegister"/>

</grounding:WsdlGrounding>

<!--Grounding for atomic process getScoreFromCreditRegister-->

<grounding:WsdlAtomicProcessGrounding

rdf:ID="WsdlGrounding_getScoreFromCreditRegister">

<grounding:owlsProcess

rdf:resource="#getScoreFromCreditRegister"/>

<!--Reference to the corresponding WSDL operation-->

<grounding:wsdlOperation

rdf:resource="#getScoreFromCreditRegister"/>

1adapted from http://www.daml.org/services/owl-s/1.1/examples.html
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<!--Reference to the WSDL input message-->

<grounding:wsdlInputMessage>

<xsd:anyURI rdf:value=

"&CreditCheckingGroundingWSDL;

#getScoreFromCreditRegisterSoapIn"/>

</grounding:wsdlInputMessage>

<!--Mapping of OWL-S inputs to WSDL message parts-->

<grounding:wsdlInputs rdf:parseType="Collection">

<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="#personID"/>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&CreditCheckingWSDL;#personID"/>

</grounding:wsdlMessagePart>

</grounding:WsdlInputMessageMap>

</grounding:wsdlInputs>

<grounding:wsdlReference>

<xsd:anyURI

rdf:value="http://www.w3.org/TR/2001/NOTE-wsdl-20010315"/>

</grounding:wsdlReference>

</grounding:WsdlAtomicProcessGrounding>

<grounding:WsdlOperationRef rdf:ID="getScoreFromCreditRegister">

<!--locate interface to be used -->

<grounding:interface>

<xsd:anyURI

rdf:value="&CreditCheckingGroundingWSDL;#getCreditScore"/>

</grounding:interface>

<!--locate operation to be used -->

<grounding:operation>

<xsd:anyURI rdf:value=

"&CreditCheckingGroundingWSDL;#getScoreFromCreditRegister"/>

</grounding:operation>

</grounding:WsdlOperationRef>
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...

By grounding OWL-S in WSDL, advantages from both languages are combined. For ex-

ample, WSDL is unable to express the semantics of an OWL class or its relationships. In turn,

OWL-S is unable to express the binding information that WSDL captures.

Running example The OWL-S ontology is a top level OWL ontology for semantically de-

scribing fundamental service aspects (Izza et al. 08). It thus provides a general description

framework. Typically, services, especially inputs, outputs, preconditions, and effects (IOPEs),

are described by referring to adequate external knowledge representations, e.g., application,

domain, or core ontologies (Klusch et al. 09, Shin et al. 09, Zuñiga et al. 14). With regards to

the running example, we make similar remarks as for SAWSDL:

• IOPEs are the main vehicle to represent what a service does. If backend processing

worth annotating is not captured in those through adequate external semantic references,

it cannot adequately be advertised and thus selected. In other words, the OWL-S Service

concept (cf., Fig. 3.6) may have the same specification for two services, despite them

being different. It relates to the next point.

• Referenced ontologies might be too specific (e.g., organization-internal ontologies) to

support the service discovery and selection, as they do not necessarily represent a shared

view, i.e., a requesters view. If, on the other side, they are too general, the service might

not be discovered for a competitive (hence, new) trait.

The dilemma of standardization vs. flexibility is, again, apparent. To us, OWL-S, though

more sophisticated than SAWSDL, still implies coherent collaboration networks. They may

serve as stabilizing element to enforce minimal formal semantic standards by means of domain

or core reference ontologies. Indeed, with respect to semantic annotation techniques such as

OWL-S, (Van Der Aalst et al. 03) states that still a well-founded least common denominator

is needed to counteract ambiguity and non-determinism. This denominator can then be used

to apply the strength of the annotation technique. For our example, pertaining to dynamic,

unforeseeable, and competitive markets, we perceive it as problematic.
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3.3.4 WSMO

The WS Modeling Ontology (WSMO) is a meta model (cf., Fig. 3.10). It provides a gen-

eral framework for WS model descriptions which result in enactable WS (Lemcke 10). Its

goal is to enable the total or partial automation of tasks occurring when using WS. It in-

cludes (De Bruijn et al. 09):

• discovering services to fulfill some task

• selecting services if more than one could accomplish the task

• composing services if the tasks are more complex

• resolving service heterogeneity on data and process level

• invoking services

M3 layer
meta meta model

M2 layer
meta model

M1 layer
model

M0 layer
information

WSMO

WSMO Descriptions

Concrete WS, Domains,

and described Data

Figure 3.10: WSMO positioning (De Bruijn et al. 09)

The approach is based on (1) strongly de-coupling the various components that realize a

distributed application, and (2) mediation enabling WS to communicate in a scalable man-

ner (Sheng et al. 14). Different to OWL-S, which takes a service point of view to describe

service activities, WSMO centers around a client’s view and its goals. The client may be either

human or a requester service (Kamaruddin et al. 12).
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WSMO (De Bruijn et al. 09, Fensel et al. 11, Wang et al. 12) relies on four top level ele-

ments: ontologies to provide the terminology, goals to define problems to be solved by the WS,

Web services descriptions defining aspects of a WS, and mediators to handle interoperability

issues (cf., Fig. 3.11). They are detailed below.

Figure 3.11: Upper WSMO Elements (De Bruijn et al. 09)

Ontologies

Ontologies are described at a meta-level. They provide formal and explicit specifications of

the vocabulary used by other modeling elements in WSMO. All top levels elements within the

WSMO meta-model can use the importsOntology statement to import ontologies that contain

the relevant concepts needed to build a description.

Goals

A goal is defined as a client’s objective or requirement when consulting a WS. For example,

it contains the requested capability including input and output requirements. Optionally, it

might also hold interface specification, i.e., the interaction pattern the service requester expects.

Furthermore, desired non-functional properties could be described.
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Web Service descriptions

Web service descriptions semantically annotate the WS themselves. They can be seen as the

counterpart to Goals, against which they are compared. It includes three parts, namely capa-

bility, interface, and non-functional information.

Capabilities, i.e., functional aspects, of the offered service are modelled in terms of pre-

conditions, assumptions, postconditions and effects. Preconditions describe conditions prior

to executing a service. They define requirements on the input (e.g., type). Assumptions are

conditions for proper execution (e.g., credit card balance sufficient to purchase an item). Post-

conditions describe the information space after execution. They define requirements on the

output. Effects are guaranteed conditions in the real world after execution (e.g., a book is deliv-

ered). Interfaces are data-centric, similar to WSDL. They thus provide details about accessing

the service’s operations. Non-functional information comprise meta-data, such as performance

parameters (reliability, security, availability, ping time, etc.).

Mediators

Mediators resolve heterogeneity problems. They define mappings, transformations, or reduc-

tions between elements involved in the semantic descriptions. Four mediators exists, namely

ggMediators, ooMediators, wgMediators, and wwMediators. ggMediators link a source goal

and a target goal. They can use ooMediators to solve differences in the terminology used to

define these goals. Goals can also be linked to ggMediators. It enables reuse of multiple goals

to define a new one. ooMediators import ontologies and resolve possible representation mis-

matches between them, such as differences in their conceptualizations. wgMediators link a

WS to a goal. This link represents the fulfilment (partial or complete) of the goal by the WS.

wgMediators can use ooMediators to resolve heterogeneity problems between the WS and the

goal. wwMediators link two WS. Again, ooMediators might be used to overcome heterogeneity

problems between the WS.

WSMO’s principle mode of operation

First, services are discovered by matching capabilities and goals. Obviously, this is based on

semantic descriptions. Second, if one or more services are identified, interface specification and

requirements must match. If the request specifies a login operation before a buying operation,
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the interface must comply with this order, i.e., interaction pattern. Third, the interface’s pos-

sible orchestration description is matched with the requester’s specifications. From 2.4.3, we

know that an orchestration specifies which services a service relies upon to provide functional-

ity. A requester may prescribe a book delivery of three days or less. The service would need to

comply with this. Fourth, if several services provide the above, the non-functional parameters

are compared and matched. Fifth, ceteris paribus, the service with the lowest price is selected

and automatically invoked based on the service interface description (similar to WSDL).

For each phase, semantic matching can be used. The matching is similar to OWL-S (cf.,

Fig. 3.8). Some examples are given below (adapted from (De Bruijn et al. 09)):

Capability/Goal matching: Given an ontology O, a WS (concept) WS, and a goal (concept)

G, the following matching possibilities are distinguished:

a) Exact match - the requested elements are fulfilled by all and only those WS elements

(G ≡O WS).

b) Subsume match - the WS provides some but not all of the requested elements (WS ⊆O G).

c) PlugIn match - all requested elements are provided by the WS, but the WS provides even

more (G ⊆O WS).

d) Intersection match - some requested elements are provided by WS (WS ∩ G *O ⊥).

e) Intersection non-match - no requested elements are provided by WS (WS ∩ G ⊆O ⊥).

Input/Output (Preconditions/Postconditions) matching: WS (goal) inputs and outputs are

similar to method or function signatures. They denote message formats sent to, and returned

by, the service. Other than for signatures, here the message formats are described semanti-

cally, denoting intention. Note that the concepts describing inputs (outputs) are part of the

preconditions (postconditions).

From individual WS inputs and outputs defined as WSIi and WSOj , with i ≤ m and

j ≤ n (similar for G) follows the overall set of inputs and outputs (WSI ,WSO,GI ,GI) with

(WSI ≡ ∃hasInput.WSI1 ⊓ . . .⊓ ∃hasInput.WSIm), (WSO ≡ ∃hasInput.WSO1 ⊓ . . . ⊓
∃hasInput.WSOn), (GI ≡ ∃hasInput.GI1⊓. . .⊓∃hasInput.GIk ), and (GO ≡ ∃hasInput.GO1

⊓ . . . ⊓ ∃hasInput.GOl
). The following matchings possibilities are distinguished:
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a) Signature full match - all inputs needed by the WS are provided by the goal, and all

outputs requested by the goal are provided by the WS (GI ≡O SI , and WSO ≡O WSO).

b) Signature output match - all outputs requested by the goal are provided by the service

(WSO ⊆O WSO).

c) Partial signature match - some outputs requested by the goal are provided by the service

WSO ∩ GO *O ⊥.

d) Signature non-match - none of the outputs requested by the goal are provided by the

service WSO ∩ GO ⊆O ⊥.

Note, that the focus here is on output descriptions. The authors ((De Bruijn et al. 09,

Fensel et al. 11)) do not expect requesters to thoroughly know, let alone specify, desired in-

puts. Requesters are more interested in the desired outputs. However, the above formalism is

similar for input matchings.

Running example WSMO aims at a unifying framework, a meta model, defining the seman-

tics and the syntax with which to describe the semantics of web services (Izza 09). It applies to

all relevant WS aspects, such as goals, capabilities, inputs, and outputs. It provides mediators

for bridging ontological gaps among different meaning systems.

Concerning the running example, i.e., dynamically exchanging the credit checking service,

we think that WSMO provides the most compelling option so far. The definition of goals

and capabilities suits our context. It emphasizes the requester’s point of view being matched

against the service’s capabilities. To us, this concept is more powerful than merely relying on

formalized IOPEs, such as in OWL-S. The competitive credit checking service’s capability part

can be extended with a reference to the sophisticated algorithm. The requester’s goals though

must also be extended with a similar reference. Here, the questions arises how a requester

might know about this new algorithm and how to circumscribe it.

However, WSMO is a framework that already unifies at the meta-model layer. It is dif-

ficult to use without broad adoption. It concerns service providers and requesters alike as

goals and capabilities have to be under the same umbrella technology, which is WSMO. In a

heterogeneous environment, one meta model “to rule them all” though is less likely adopted.

Indeed, (Kamaruddin et al. 12) states that the WSMO (as well as OWL-S) is not universally

applicable, but depends on the purposes. The authors’ survey on WSMO and OWL-S usage
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suggests specific, relatively stable domains, e.g., governmental. In other words, if the requester

does not understand the WSMO meta model, the more sophisticated service might not be rec-

ognized.

Another issue, which clearly applies to all techniques introduced so far, is the symbolic

approach itself. As stated within Section 3.1, eventually they solely rely on arbitrary symbolic

shapes. Consequently, it also applies the matching act. If symbols are not equal, there is

no match. Compensating mediators are based on the same approach. They therefore do not

address this point. It will be further detailed in the remainder of this document (e.g., Sect. 5).

3.4 Discussing the gap

Current industrial integration techniques (cf., Chap. 2) are entirely based on syntax. The mean-

ing of interfaces is defined by human experts who implement them. Granted, some degree of

adaptability is offered by means of rule engines. However, it only applies to a predefined set of

anticipated composition paths (cf., Fig. 3.12).

It is useless for unforeseeable changes. Those need expert intervention. Eventually, these

experts constantly negotiate and agree on input and output terms, e.g., as different service

providers might have different assumptions about them; monitor and rectify changing interface

specifications, e.g., regarding data types, field lengths; and need to understand and translate

changing business requirements in order to adapt services compositions and data flows.

Due to the syntactic nature, for many authors (Izza 09, Hoang and Le 09, Fensel et al. 11,

Hoang et al. 14), the above mentioned integration techniques are blind to the semantics of ser-

vices. They merely regulate information and meta-data. The authors advocate to use a formal-

semantic approach as described in this chapter. For them, semantic descriptions of services are

necessary to establish interoperability without human intervention, which otherwise is costly,

rapidly obsolete, or non-reusable in an environment with the dynamic contexts described so

far. In short, it shall enable machines to understand the meaning of services to accomplish the

tuple ⟨discover, select, resolve (heterogeneity), compose, invoke⟩ (cf., again Fig. 1.2).

Clearly, the usage of meaning systems and automatic reasoning capabilities (cf., Fig. 3.8

and 3.10) improve on those aspects over syntactic approaches. However, at several occasions

we mentioned shortcomings, such as:
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Figure 3.12: Commercial workflow engine with workflow example. Contingent execution paths
are predefined.

• Simple structure of semantic services descriptions (e.g., OWL-S’s IOPEs). They are

possibly insufficient or too restrictive to capture distinctive aspects of enterprise-level

services (e.g., Salesforce’s CRM).

• Practicality only for simple services, expressible by the standards.

• Single, specific meta model (e.g., WSMO), implying that requesters and providers re-

spect it “to the letter.” Only then, they can adequately formulate requirements1 to find

each other.

• Tendency to assume stable collaborative networks for proper operation. However, this

defies the purpose of coping with the reality of an unforeseeable, independent service

landscape.

1For example goals, resp. capabilities.
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• Purely symbolic matching, possibly missing out on “close-to” matches if goals or re-

quirements are ill- or non-defined, or adhere to different symbol system (e.g., Arabic).

• Formal-semantic systems, still being symbol systems with no true representation of

meaning. Therefore, flexibility is still predefined, although less than the case with syn-

tactic approaches.

Indeed, those points reflect in (Oberle et al. 05), conveying a similar scepticism. To them,

it is unclear, what kind of powerful machinery could constitute a semantic model allowing for

full automation, and indeed, such full automation seems outside the scope of software systems

within the foreseeable future. The authors advocate that semantic management of WS should

not try to produce full automation of all WS management tasks. That would presuppose an

understanding of the world, too difficult to be modelled explicitly. Consequently, the described

symbol-semantic, i.e., explicit, techniques are always too abstract or coarse-grained, and insuf-

ficient for continuous, adequate and automated service selection and integration.

Eventually, these issues limit the usage of symbol-semantic approaches under heteroge-

neous, unforeseeable conditions. To us, it follows that the first research questions, namely,

Can ontologies stand-alone, that is, in isolation, be used for an intelligent service selection

and integration method?

can not be answered satisfactorily with yes, if we only look at ontologies.

Clearly, semantic descriptions (i.e., ontologies) can be, and are used, as means for service

selection and integration. However, an intelligent approach presupposes the proactive identifi-

cation and understanding of unknown input and analysis towards synthesis of possible actions

to perform in response to the understood input (Zdravković et al. 14). As stated in Section 3.4,

this is necessary for continued understanding of what a good service is, selection of the best1

service, and integration of the selected service. Again, the specific fact of restrictive meta mod-

els, and the general fact of relying on purely symbolic representations would not allow for such

behavior.
1For a definition of “good” and ”best”, cf., Chapter 2.
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3. SEMANTIC INTEGRATION

During the next chapters, we therefore combine the above symbol-based ontology ap-

proach with a nonlinear data representation approach, the LRAAM (Labelled Recursive Auto-

Associative Memory). We advocate that the combination of explicit (symbolic) and reduced

(subsymbolic) semantic approaches brings us closer to what we understand by an intelligent

SSC. Specifically, with an LRAAM, an entire arbitrary-sized graph structure of a semantic

description, i.e., ontology, can potentially be compressed into a fixed-size neural network rep-

resentation (de Gerlachey et al. 94, Sperduti 93). This distributed, inner representation is then

transformed into a distance measure to better (i.e., holistically) compare semantic specifica-

tions, e.g., representing business requirements (i.e., goals) and services (i.e., capabilities).

88



4

Global service selection and
composition algorithm

In Chapter 3, we have made the case that under changing conditions, formal-semantic service

descriptions improve automated service integration over purely syntactic approaches. Specif-

ically, machine reasoning based on ontological descriptions allows for better, and automatic,

matching of the right concepts. It may for example concern input/output or requirement/func-

tionality relations (cf., (Antoniou and van Harmelen 08), or (Antoniou and van Harmelen 09)

for further details).

However, we also discussed issues limiting its usage under heterogeneous, unforeseeable

conditions. These limits are due to the assumption of restrictive meta-models to apply through-

out, or to the arbitrary nature itself of symbolic signs with no inner meaning.

Within the next sections, we aim at attenuating this conflict. To this end, we propose a

global formal-semantics based service selection and composition algorithm. For convenience,

we name this algorithm GSSC (Global Service Selection and Composition). It does not pre-

suppose a restrictive meta model, such as SAWSDL, OWL-S, or WSMO. It however under-

stands OWL and prepares heterogeneous semantic requirements and service descriptions for

subsequent similarity analysis and composition. To compare the descriptions, we introduce a

non-linear classification and matching approach, the LRAAM, as detailed in Chapter 6. The

LRAAM shall compensate for the heterogeneity brought about by the lack of a restrictive meta

model (other than OWL itself). It also serves as a distributed, “inner” semantic representation,

also called micro-semantic (Blank et al. 92).
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4.1 Building blocks

Initially, free semantic descriptions are produced of business activities and how they are related,

and of independent – competing – services (e.g., data model and functionality). Consequently,

in a world with lots of requirements and third-party services offerings, many independent on-

tologies may exist. Heterogeneity is inherent and to be expected. Finding similarity among

those ontologies is thus necessary to know which service can support a given business activity.

GSSC focuses on those ontologies.

Specifically, similarity is measured among (1) process ontologies, describing business ac-

tivities and precedence rules, and (2) service ontologies, describing functionality and data

model offered (Ludolph et al. 11). Similar to WSMO, our assumption is first, that service

and business activity descriptions can be more or less similar, and second, that similarity is a

selection criterium. The most similar service (out of many) for a certain business activity is

thus selected1.

4.1.1 Process ontology

The process ontology is an ontological representation for causally related activities. They form

a chain of business requirements. Within it, any pair of consecutive activities is identifiable. In

principle, there is no restriction as to how domain experts (or ontology engineers) of organiza-

tions describe the activities. In Figure 4.1, an example is given2. It is aligned to our running

example.

Completeness of the representation depends on the organization’s domain experts who en-

code them. Within the figure, some concepts detailing the activity CreditChecking are empha-

sized (cf., magnifying glass). Clearly, further concepts pertaining to IOPEs, goals, data types,

etc. could be defined here.

4.1.2 Service ontologies

A service ontology describes the functionality supported by the service (i.e., application) and

the data structure, resp. IOPEs, needed for accessing that functionality. In this context, we refer

to functionality as the set of functions offered to the user. More than one service might exist

1The concept “similarity” is introduced in greater detail in Section 6.3.
2More complex process elements, such as “split,” “join,” etc. are not relevant to show the concept.
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GetPersonID

Calculate

Default

Score

ReturnScore

Tasks

CreditChecking

…

Process

Activity

CreditApprovingMeetWithCustomer

RequestCreditAmount

CapturePersonID

CreditChecking

Figure 4.1: Simple ontology for related business activities.

to support a certain activity. Consequently, more than one service ontology might exist geared

towards one activity. A simple example for a CreditChecking service is given in Figure 4.2.

In light of to the running example, let us assume that a second service is available. It is

provided by another Cloud-based service providers. From a requester’s perspective, it offers

the same functionality as the first credit checking service. The input is personID, the output is

score. However, there is a difference in the quality of the scoring value. It is more reliable due

to a more sophisticated risk evaluation algorithm (cf., Fig. 4.3). The second service’s ontology

reflects this difference.

4.1.3 Sequence ontology

The sequence ontology is an auxiliary ontology (cf., Fig. 4.4). It represents a generic activity

sequence. It has three objectives. First, it is used to construct a reference ontology describing

a pair of related business specifications taken from the process ontology. Second, it is used to

construct a compound ontology describing how services may implement the reference ontol-

ogy. The compound ontology is constructed by pairing available services ontologies. Third,
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getEntries

calculate

Insolvency

Risk

calculateScore

returnScore

Methods

CreditChecking

Service

CreditChecking

Figure 4.2: Simple ontology for a credit checking service.

the sequence ontology’s elements represent the reduced representation for similarity analysis

(detailed in Chap. 7).

Specifically, key concepts such as SourceFunction and DestinationFunction are used by

GSSC to attach respective semantic descriptions (magnifying glass). Similarly, data structures

can be attached to SourceDataObject or DestinationDataObject. For simplicity reasons, this

however is not discussed during the reminder of the work.

4.1.4 Reference ontology

A reference ontology models a specific sequence of consecutive business activities. It uses the

sequence ontology as basis. Descriptions are taken from each consecutive pair of activities

described within the process ontology (cf., Fig. 4.1). They are attached at the location of

the sequence ontology’s relevant placeholders. GSSC uses key elements to accomplish this

task, such as Activity, Service, SourceFunction, and DestinationFunction. Figure 4.5 shows an

example.

Clearly, a detailed representation within the process ontology is warranted to obtain the best

possible reference for comparison with alternative service combinations (cf., next section).
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getEntries

calculate

Insolvency

Risk

calculateScore

returnScore

Methods

CreditChecking

awesomeBigData

RiskCalculation

Service

CreditChecking

Figure 4.3: Simple ontology for a different credit checking service.

4.1.5 Compound ontologies

A compound ontology is constructed by pairing two available service ontologies. Several ser-

vice ontologies might exist to support one activity. Therefore, many compound ontologies are

constructed and compared against one reference ontology for ontological similarity. Figure 4.6

shows an example of a compound ontology.

Ideally, a more detailed representation of a service improves the likelihood to be selected

over a competitive service when alternative service combinations, i.e., compound ontologies,

are compared with one reference ontology. The next section sheds more light on this aspect.
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… …

SourceFunction

SourceDataObject DestinationDataObject

DestinationFunctionDataObject

DataModel

Figure 4.4: Sequence ontology. The placeholders (magnifying glass) are replaced, either with
specifications, extracted from the process ontology to construct the reference ontology, or with
specification, extracted from the service ontologies to construct the compound ontology.
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SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

TasksCreditApproving

ReturnApproval

ApprovalDecision

GetScore

GetPersonID

CalculateDefaultScore

ReturnScore

TasksCreditChecking

Figure 4.5: Reference ontology with attached semantic description coming from the process on-
tology. (CreditApproving elements are added for this example.)
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SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

MethodsCreditApproving

returnApproval

approvalDecision

getScore

getEntries

calculateInsolvencyRisk

calculateScore

MethodsCreditChecking

returnScore

Figure 4.6: Compound ontology with attached semantic description coming from service ontolo-
gies. CreditChecking elements are different from the respective elements in the reference ontology.
(CreditApproving elements remain the same.)
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4.1.6 Running example revisited

A specific service combination (CreditChecking-x-CreditApproving) is shown in Figure 4.7 as

it contrasts with a specific reference ontology. The CreditChecking service is the “normal” one

as depicted in Figure 4.21. It used to satisfy the bank’s business requirement (cf., Fig. 4.1) for

scoring a person’s solvency. The dashed frames show the parts relevant for similarity analysis.

Figure 4.8 shows the more sophisticated service (cf., Fig. 4.3) contrasting with the same

reference ontology as above. It is reasonable to assume that the ontological distance, notwith-

standing the measure, is higher than in the first case shown in Figure 4.7. In other words, the

new service is not considered by the bank.

In contrast, Figure 4.9 depicts the more sophisticated service as it contrasts with a differ-

ent reference ontology. The difference could be the result of the bank’s changing business

requirement. It is now represented within a new ontological description. We might assume

that the similarity between the new requirement for CreditChecking and the more sophisticated

credit-checking service is, henceforward, smaller than between the new requirement and the

“normal” service. The new service should thus be selected2.

Eventually, it ought not to be our task to opine (i.e., guess, assume) which distance is

smaller. The system, equipped with a certain degree of “intelligence” should be able to accom-

plish this.

1The CreditApproving service remains the same.
2Again, the CreditApproving service is stable and only shown for the sake of completeness in this example.
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SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

TasksCreditApproving

ReturnApproval

ApprovalDecision

GetScore

GetPersonID

CalculateDefaultScore

ReturnScore

TasksCreditChecking

SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

MethodsCreditApproving

returnApproval

approvalDecision

getScore

getEntries

calculateInsolvencyRisk

calculateScore

MethodsCreditChecking

returnScore

Figure 4.7: Reference ontology (above) and compound ontology (below) for similarity analysis.
Dashed frames are relevant for similarity analysis.
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SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

TasksCreditApproving

ReturnApproval

ApprovalDecision

GetScore

GetPersonID

CalculateDefaultScore

ReturnScore

TasksCreditChecking

SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

MethodsCreditApproving

returnApproval

approvalDecision

getScore

getEntries

calculateScore

MethodsCreditChecking

returnScore

awesomeBigData

RiskCalculation

calculateInsolvencyRisk

Figure 4.8: Reference ontology (above) and compound ontology for competing service (below).
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SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

MethodsCreditApproving

returnApproval

approvalDecision

getScore

getEntries

calculateScore

MethodsCreditChecking

returnScore

awesomeBigData

RiskCalculation

calculateInsolvencyRisk

SourceFunction

SourceDataObject DestinationDataObject

DestinationFunction
DataObject

DataModel

CreditChecking CreditApproving

TasksCreditApproving

ReturnApproval

ApprovalDecision

GetScore

GetPersonID

CalculateDefaultScore

ReturnScore

TasksCreditChecking

CoolBigDataDefaultScore

Figure 4.9: Reference ontology for new requirement (above) and compound ontology for compet-
ing service (below).
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4.2 Global service selection and composition algorithm

After introduction of the building blocks and principles, GSSC1 is detailed as followed: From

a well-defined process ontology, all pairs of consecutive activities are first identified and trans-

formed into a set R = {raa′} of reference ontologies, where raa′ is the reference ontology

between activities a and a′ (cf., Algo. 4.2.2, buildReferenceOntologyList). Furthermore, ser-

vice ontologies are paired to form a set C = {css′} of compound ontologies representing

services s and s′ combined, such that s ̸= s′ (cf., Algo. 4.2.3, buildCompoundOntologyList).

Both sets of ontologies are compared with each other to evaluate ontological similarity. To

this end, what we infer to as ontological distance drc is measured between each pair of refer-

ence and compound ontologies. It results in a matrix D = [drc], where drc is the ontological

distance between reference ontology r and compound ontology c (cf., Algo. 4.2.4, compute-

DistanceMatrix). In Chapter 6, we define the specific measure for drc. In Chapter 7, we present

the respective algorithm to compute drc.

The distance matrix D is then used by GSSC, which extracts those services (i.e, c) opti-

mally supporting each defined business activity (i.e., r; cf., Algo 4.2.5, optimizeMapping). It is

achieved by a branch an bound approach minimizing over the computed ontological distances

drc, but also integration and acquisition costs2.

4.2.1 GSSC

Algorithm 4.2.1: GSSC

1 buildReferenceOntologyList // Algo. 4.2.2
2 buildCompoundOntologyList // Algo. 4.2.3
3 computDistanceMatrix // Algo. 4.2.4, calling LDIST: Algo. 7.2.1 to Algo. 7.2.10
4 optimizeMapping // Algo 4.2.5

1For readability divided into parts.
2For our experiments however, we fixed costs at 0, as the focus at this time is only on drc.
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4.2.2 Build reference ontology list R = {raa′}

Algorithm 4.2.2: buildReferenceOntologyList – constructs the set of reference ontologies
for every consecutive activity pairs

Goal : Create a reference ontology for each activity pair (a, a′) such that a precedes a′

in the process.
Input : A process ontology showing activities and precedence rules. Activity

description ideally includes modeling of concepts manipulated by the activity.
Output : The result is set R = {raa′}, the set of reference ontologies, where raa′ is the

reference ontology between activities a and a′. The output activity of reference
ontology raa′ is a, noted AO(raa′), whereas the input activity of reference
ontology raa′ is a′, noted AI(raa′).

1 R← ∅
2 Seek the class Activity in the process ontology
3 Let A be the set of classes being domain of the subClass relation where Activity class is the

range
4 foreach a ∈ A do
5 foreach FollowedBy property p for which a is domain do
6 foreach class a′ range of p do
7 Construct raa′ from the sequence ontology such that a is attached

as subClass of SourceService and a′ is attached as subClass of
DestinationService, including modeling concepts manipulated by
the activity.

8 R← R ∪ {raa′}
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4.2.3 Build compound ontology list C = {css′}

Algorithm 4.2.3: buildCompoundOntologyList – Creation of compound ontologies

Goal : Create all compound ontologies for all distinct services sets that can be
performed by the available applications.

Input : The set of application ontologies that describe the set of all services in an
application and the data model used by these services either as input or as
output, or both.

Output : The result is a set C = {cSS′}, the set of compound ontologies for sets of
services S and S′, such that S ∩ S′ = ∅. The output service set of compound
ontology cSS′ is S, noted SO(cSS′), whereas the input service set of compound
ontology cSS′ is S′, noted SI(cSS′).

1 C ← ∅
2 S← ∅
3 foreach application ontology o do
4 Seek the class Service in o
5 S← S ∪ {s|s is a class in o and s is a subClass of Service and s is range of

linkDataService}

6 foreach S ∈ P(S) \ {∅} // P(S) is the power set of S
7 do
8 foreach S′ ∈ P(S) \ {∅} such that S ∩ S′ = ∅ do
9 Construct cSS′ from the sequence ontology such that all services in S are

attached as subClass of SourceService and all services in S′ are attached as
subClass of DestinationService, including data modeling manipulated by
the services.

10 C ← C ∪ {cSS′}
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4.2.4 Determine ontological distance matrix D = [drc]

Algorithm 4.2.4: computeDistanceMatrix – Construct distance matrix between reference
and compound ontologies

Goal : Determine ontological distance between each pair of reference and compound
ontologies.

Input :

• R = {raa′}, the set of reference ontologies, where raa′ is the reference ontology
between activities a and a′.

• C = {cSS′}, the set of compound ontologies for sets of services S and S′, such that
S ∩ S′ = ∅.

Output : The result is matrix D = [drc], where drc is the ontological distance between
reference ontology r and compound ontology c.

1 C ← ∅
2 S← ∅
3 foreach r ∈ R do
4 foreach c ∈ C do
5 drc ← distance between reference and compound ontology. Different

distance functions can be tested in order to choose the most efficient // e.g.,

the LRAAM-based function as described in Chapters 6 and 7.

Step 5 within Algorithm 4.2.4 serves as a place holder. Various matching methods can

be used to compute drc. A brief overview about these is given in Chapter 5. Thereafter, we

explore the LRAAM-based method (cf., Chap. 6 and 7, specifically Algo. 7.2.10, compute

distance drc).

With the above distance matrix, the subsequent (main) algorithm calculates the optimal set

of compound ontologies to support all consecutive reference ontologies.
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4.2.5 Determine optimal set of compound ontologies

The distance matrix provides individual distances among all compound and reference ontolo-

gies. In a next step, a branch and bound optimization algorithm (cf., Algo 4.2.5, optimizeMap-

pingff.) determines the optimal set of compound ontologies to support all reference ontologies.

It receives input defined as follows:

• Reference ontology precedence matrix

with ai(r) input activity of r, and ao(r′) output activity of r′

N = [nrr′ ] where
{

1 iff ai(r) = ao(r′)
0 otherwise

It enforces the sequence of activities as defined by the business expert.

• Compound Ontology Sequence Matrix

with si(c) input service of c, and so(c′) output service of c′

K = [kcc′ ] where
{

1 iff si(c) = so(c′)
0 otherwise

It enforces a sequence of adequate services to support a sequence of activities, ideally

the above one.

• Service - Compound Ontology Membership Matrix

M = [mcs] where
{

1 iff ∃so(c) or ∃si(c)
0 otherwise

It assures that a service is part of a compound ontology, either to produce an output or to

receive an input.

• Decision Matrix

X = [xrc] where
{

1 when c is matched with r
0 otherwise

It indicates matching of a compound ontology to a reference ontology.

• Set of available on-premise applications P = {p}
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• Application purchase cost ρp is the cost to acquire application p containing a set of

services Sp = {sp}.

• Off-premise service purchase cost ρs is the cost to acquire/use/consume service s either

to produce an output or to supply it an input.

• κ is the linear unit cost to integrate non-integrated functionality of s or p, that is, when-

ever drc ̸= 0, the cost to reconcile differences between functionality and activity by

means of an integration effort.

Given the definitions above, the objective of the optimization algorithm is to find

min

∑
r∈R

∑
c∈C

xrc ·

κ · drc +
∑
p∈P

min

1,
∑
s∈Sp

mcs

 · ρp +∑
s∈S

mcs · ρs

 (4.1)

In words, the focus is on (1) identifying matches among R and C (xrc), which minimize

(2) integration costs (κ), (3) costs of on-premise applications packages/add-on’s providing

services bundles (ρp), and (4) costs of off-premise, cloud-based services (ρs).

The optimization is subject to the following constraints:

1. Pruning for optimality: each r must be matched with exactly one c.

∑
c∈C

xrc = 1, ∀r ∈ R

2. Pruning by upper bound: at maximum one c is matched with an r.

∑
r∈R

xrc ≤ 1, ∀c ∈ C

3. Pruning by infeasibility

nrr′ · xrc · xr′c′ ≤ kcc′ , ∀r, r′ ∈ R, ∀c, c′ ∈ C
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Mapping optimization

Algorithm 4.2.5: optimizeMapping

1 x[]← new array of compound ontologies of |R| elements. // Note that the ith element of x
is the compound ontology matched to the ith member of the set of reference ontologies R.
We will refer to the ith member of the set of reference ontologies R as R[i].

2 xOpt []← new array of compound ontologies of |R| elements.
3 cost ← 0
4 optCost ←∞
5 for c ∈ C do
6 extendSolution(x, cost , xOpt , optCost , 0, c)

Algorithm 4.2.6: extendSolution(x, cost , xOpt , optCost , level , choice)

1 x[level ]← choice
2 cost ← cost+computeResidualCost(level , choice)
3 if partialSolutionOK(x, cost , optCost , level ) then
4 if level = |R| − 1 then
5 substituteOptimal(x, cost , xOpt , optCost)

6 else
7 for c ∈ C do
8 extendSolution(x, cost , xOpt , optCost , level + 1, c)

9 x[level ]← null
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Algorithm 4.2.7: computeResidualCost(level , choice)

1 residual ← κ · dR[level ],choice

2 for p ∈ P do
3 min ← 0
4 for s ∈ Sp do
5 min ← min +mchoice,s

6 if min ≥ 1 then
7 residual ← residual + ρp

8 for s ∈ S do
9 residual ← residual +mchoice,s · ρs

10 return residual

Algorithm 4.2.8: partialSolutionOK(x, cost , optCost , level )

1 if optCost < cost then
2 return false // optimal constraint

3 for i from 0 to level − 1 do
4 if x[i] = x[level ] then
5 return false // 2nd constraint

6 if nR[i],R[level ] > kx[i],x[level ] then
7 return false // 3rd constraint

8 return true

Algorithm 4.2.9: substituteOptimal(x, cost , xOpt , optCost), level )

1 if optCost > cost then
2 for i from 0 to (size of x)−1 do
3 xOpt [i]← x[i]

4 optCost ← cost
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4.3 Discussing the global solution

Under the conditions described above, it can be inferred that for the distance measure (i.e.,

dissimilarity function) drc ∈ {0, . . . , u}, with u ∈ R, ∀r ∈ R, ∀c ∈ C, the perfect value would

be drc = 01. It would return an optimal, integrated sequence of services to support a prede-

fined business process. Integration costs would be non-existent. Additionally, it would merely

become a question of non-functional aspects, namely of application and service purchasing

costs.

However, this is an idealistic case. If nothing else, in the unforeseeable dynamic service

landscape, services are even expected to be different from business requirements. Service

offerings ought to be standardized in order to be reusable. Business requirements ought to be

dynamic, as they represent a company’s differentiation efforts.

The challenge is thus to find a matching method to minimize drc, which would respectively

minimize the objective function 4.1.

As stated at the beginning of this chapter, pure symbolic matching approaches are limited

in accomplishing this task. Strict symbol systems, i.e., meta models, need to be established.

Comparison and matching is then based on shapes which have nothing to do with true meaning.

This, eventually, limits flexible integration automation.

In the next chapter, we briefly describe some ontology matching methods before we intro-

duce the non-linear classification method, the LRAAM. We explore the latter as means to cope

with the aforementioned shortcomings of symbolic matching methods.

1cf., Sect 6.3ff. for a detailed definition of d.
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Ontology-based matching

In the preceding chapter, we argued that ontologies shall be used to steer the service integra-

tion, i.e., composition, process. Thereby, our reasoning entailed the existence of a variety of

a priori heterogeneous ontologies. They may contain different conceptualizations stemming

from different domains.

In such a scenario however, we expect to find intersections of the semantic descriptions

(and by extension of the service functionality to be integrated). Without such a relation an

integration attempt would be useless. Clearly, a credit checking service is semantically more

similar to a credit approval service (e.g., with the concepts score or personID) than it is to a

weather forecast service (e.g., without the concepts score or personID). In short, ontologies

need to be related or matched in a fashion to consistently derive the best possible service

composition. Once a best match is found, it can be used to formulate instructions for the

specific service integration (such as presented in Chap. 3).

Ontology matching as discipline aims at proposing mechanisms to find semantic simi-

larities. As described in Figure 3.8, they usually stand for equivalence, super relation, sub-

sumption, or disjointness between ontological entities. The results, called alignments, ex-

press with various degrees of (symbol-based) precision the relation between the ontologies

(Euzenat and Shvaiko 07).

5.1 Ontology matching and alignment

A match is the fundamental operation to identify similarity (Rahm and Bernstein 01). It takes

two ontologies as input and produces a mapping between semantically similar entities.
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Following (Kotis et al. 06), the matching of two ontologies o and o′ can be defined as a

morphism from o to o′. The associated matching task is to find an alignment A between o

and o′ (Euzenat and Shvaiko 07). An alignment is then a set of correspondences, which in

turn is a 4-tuple ⟨id, eo, eo′ , r⟩, with id as correspondence identifier, eo and eo′ as entities

(e.g., classes, properties) of the compared ontologies, and r ∈ {6,=,1,⊥}1 the identified

relation (Atencia et al. 11).

Furthermore, instead of aligning two ontologies “directly,” intermediate foundational, do-

main, or core reference ontologies (e.g., WordNet, DBPedia, etc.) can be used. They serve as a

common denominator for term and axiomatic reference. Given two source ontologies o and o′,

the merging problem is then to find an alignment by mapping them to the intermediate ontology

and obtain the minimal union of their terms with respect to the their alignment (Kotis et al. 06).

5.2 Application areas for ontology matching

In general, matching is a typical operation where heterogeneous structural models are encoun-

tered, such as for database schemas, data centers, supply chains, etc. As stated at the beginning

of Chapter 4, without semantic annotations, those matching operations are mostly done manu-

ally or semi-automatically. With the advent of dynamic network structures and data flows (e.g.,

driven by Cloud-based service offerings, agents, or peer-to-peer systems), runtime matching

will likely be required (Euzenat and Shvaiko 13). The authors thus advocate to replace manual

approaches by automatic matching techniques (cf., next section). For example, in Table 5.1,

they suggest application areas and the matching subject.

5.3 Ontology matching techniques

Various techniques are used to find correspondences. Following (Euzenat and Shvaiko 07,

Shvaiko and Euzenat 05, Euzenat and Shvaiko 13), they are classified into syntactic and (for-

mal) semantic matching techniques (cf., Table 5.2).

1reads: is less general than, equal, is more general than, disjoint from.
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5.3 Ontology matching techniques

Table 5.1: Areas for ontology matching

Application Matching subject

Ontology engineering transformation
Schema integration merging
Catalogue integration data translation
Data integration query mediation
P2P information sharing query mediation
Web service composition data mediation
Multi agent communication data translation
Context matching in ambient computing data translation
Semantic web browsing navigation
Query answering query reformulation

Table 5.2: Classification of matching techniques (adapted from (Euzenat and Shvaiko 13)).

Syntactic Semantic

Element-level
(considers classes
or their instances
in isolation from
their relations
with other classes
or their instances)

Informal resource-based
(directories, annotated resources):
relates ontologies to informal
resources, e.g., annotating
encyclopedia pages or pictures.
For example, two classes
annotating the same set of pictures
are considered equivalent.
Techniques exploit data analysis
and statistical approaches to find
regularities (cf., below).

Formal resource-based
(upper-level ontologies,
domain-specific ontologies, linked
data): uses external ontologies to
perform matching. Specifically,
alignments among local ontologies
are facilitated by one or more
referential ontologies.

String-based (name similarity,
description similarity, global
namespace): the more similar
strings are, the more likely they
denote the same concept. A
distance functions maps a pair of
strings to a real number. A smaller
number indicates a greater
similarity, such as the Hamming
distance described in Section 4.2.

– continued on next page
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5. ONTOLOGY-BASED MATCHING

Table 5.2 (continued from previous page)

Syntactic Semantic

Language-based (tokenisation,
lemmatisation, morphology,
elimination, lexicons, thesauri):
based on natural language,
exploiting morphological
properties of words, e.g.,
tokenization:
Hands− Free_Kits→ <
hands, free, kits >,
lemmatization: Kits→ Kit

Constraint-based (type similarity,
key properties): deals with the
internal constraints being applied
to the definitions of entities, such
as types, cardinality of attributes,
and keys. Entities with
comparable internal structure or
properties with similar range and
domain are used to create
correspondence clusters.

Structure-level
(considers
concepts or their
instances to
compare their
relations with
other concepts or
their instances)

Taxonomy-based (taxonomy
structure): graph algorithms,
which consider only specialization
relations. A is-a link is supposed
to connect terms which are already
similar (subsets, supersets of each
other). Neighbors might therefore
also be similar.

Model-based (SAT solvers, DL
reasoners): algorithms that handle
the input based on its semantic
interpretation, e.g.,
model-theoretic semantics. If two
entities are the same, they share
the same interpretation. They are
well-grounded in deductive
methods (cf., Sec. 3.1).

Graph-based (graph
homomorphism, path, children,
leaves): graph algorithms which
consider input ontologies as
labeled graphs. Similarity is based
on the analysis of the terms’
position within the graphs.

– continued on next page
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Table 5.2 (continued from previous page)

Syntactic Semantic

Instance-based (data analysis,
statistics): compare instances (i.e.,
objects) of classes to decide if
classes match. They may rely on
data analysis (e.g., correspondence
analysis) and statistical techniques
(e.g., frequency distributions).

These matching techniques differ in respect to speed, resource consumption, degree of

precision, completeness and thus in their suitability concerning the different application areas

(cf., Sect. 5.2).

5.4 Discussing the gap

Let us assume a single consistent global ontology. It could be used to uniquely describe any

service conceivable now and in the future. In such a scenario, symbolic matching methods

would provide suitable candidates for finding, at least theoretically, perfect matches, i.e., A =

R. The reason is that A as well as R would be conceived from the same “vocabulary.” Applied

to our context, it could for the distance measure drc ∈ {0, . . . , u} effectively return a value of

drc = 0. In the following points, however, we depict more or less obvious concerns with this

assumption and the above described matching in general:

• As stated in Section 3.4, in reality, there is no such a semantic umbrella, i.e., global

ontology. It is thus not even likely that an A exists to completely correspond to R. In

fact, we do not know the future, different languages (yet to be), or how independent

organisations define the world, or else, services and requirements, in different terms.

• R is a reference provided by a human expert. Clearly, it is problematic in the sense of

understanding unknown conceptual input towards meaningful actions (as mentioned at

beginning of Chapter 4).
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• Matching techniques mentioned above focus on individual elements or whole structures.

They analyze frequency distribution or specific languages’ morphologies. They intro-

duce external data repositories. Eventually, they all work on discrete arbitrary objects,

that is, symbolic signifiers. Eventually, they rely on the exactness of those in order to

execute the appropriate, yet predefined, operations. The introduced quality measures are

also submitted to this principle.

• No inner representation of the signified exists. To the symbolic matching system, actu-

ally, the signified does not even exist. Therefore, the above techniques do not operate

when confronted with undefined signifiers (imagine the Chinese room experiment, de-

picted in Section 3.1, this time with syntactic rules to manipulate the Chinese symbols

not written in English, but for example in Chinese.)

All points are at odds with the undeniable fact of continuous variations and lack of presup-

posed exactness in the problem domain, namely the ever shifting reality of organizations.

In the next chapter, the described symbol-based approach is thus combined with a non-

deterministic approach. Specifically, we depict an artificial neural network (ANN) imple-

mented as LRAAM (Labelled Recursive Auto-Associative Memory). As opposed to the above

symbolic focus, it concentrates on parallel data processing and distributed representations.

Such distributed entities can be called subymbolic (Blank et al. 92), or else, sublexical sym-

bols (Chan 03). In the next two chapters, we detail their integration into the overall approach.

We also depict why this may be beneficial to alleviate the shortcoming of purely symbolic

approach.
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LRAAM-based matching

The Labelled Recursive Auto-Associative Memory (LRAAM) is an artificial neural network

(ANN) implementation with a specific network topology. It is able to transform complete

graph structures into distributed representations. In this chapter, we introduce and explore

it as a matching method to compare semantic, graph-like, descriptions. Our objective is to

better account for variations in ontological descriptions, which otherwise may be incorrectly or

not at all classified by symbol-based matching methods. We obtain the distance measure drc,

which is used by GSSC presented in Chapter 4 to determine appropriate services to support

requirements.

In the following sections, the specific LRAAM topology is introduced. We explain how it

shall help to calculate the distance drc between semantic descriptions, namely reference and

compound ontology. We also discuss the approach in light of the running example.

6.1 Artificial neural networks

Typical symbols in a symbolic model are letter strings, such as an ontological class (e.g.,

person). A symbol may be placed into structured relationships with other symbols, e.g., sub-

sumption (cf., Fig. 3.8). It might be bound to a variety of values during the course of processing.

However, it never changes its (arbitrary) shape. As discussed in Section 3.1, one can replace

the shape by A, B, etc. and still keep its formal-semantic position within a logical defined

system of axioms. The label is simply an atomic label possessing no internal structure of its

own (Blank et al. 92).
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6. LRAAM-BASED MATCHING

As opposed to logics- and symbol-based concepts, an ANN belongs to the subsymbolic or

distribute paradigm. It represents distributed patterns, i.e, subsymbols, of continuous values.

During processing, these patterns might evolve into slightly different patterns. They neverthe-

less still behave in a closely related way to the original pattern. Thus, specific values within

subsymbolic patterns cannot be replaced by arbitrary other values and still produce the same

results.

ANNs, and specifically the LRAAM implementation, have the ability to extract patterns

from complicated or changing input data. In our context, this is used to evaluate similarity of

ontological patterns. Specifically, it pertains to changing r and c. These changes are supposed

to be steady and can thus be too difficult (i.e., too subtle) to be noticed by either humans or

symbol-based computer techniques (Li et al. 12).

In (Blank et al. 92), three major pillars distinguish the subsymbolic from the symbolic rep-

resentations: the type of representation, the style of composition, and the functional character-

istics. They are summarized in Table 6.1.

Table 6.1: Symbolic vs. subsymbolic paradigm

Subsymbolic Symbolic

Representation distributed atomic
continuous discrete
emergent static
use affects form arbitrary

Composition superimposed concatenated
context-sensitive systematic

Functionality micro-semantic macro-semantic
holistic atomic

ANN’s interesting properties do not arise from the units’ individual functionality but from

the collective effects resulting from the interconnections of these units. The network is able to

encode input patterns into intermediate patterns of activation spread across the hidden layer. It

thus amounts to the development of distributed internal representations of the input informa-

tion (Blank et al. 92).

Since our research topic conceptualizes this input information as being symbolic, the basic

rationale of a concerted, symbolic/connectionist approach is established. In the next section,
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the distributed, i.e., the LRAAM, and symbolic, i.e., ontological, paradigms are thus brought

together.

6.2 LRAAM as matching method

The LRAAM is a particular implementation of an ANN. Its most intriguing feature is the po-

tential to encode (and decode) labeled directed graphs of arbitrary size (de Gerlachey et al. 94,

Sperduti 93). The resulting patterns are sensitive to the graph they represent. Following

(Ellingsen 97), these patterns can be exploited for similarity analysis. They are thus used to

calculate the distance measure drc.

Architecture

The general architecture of an LRAAM is shown in Figure 6.1. It is a supervised 3-layer feed-

forward network trained by backpropagation. The term “auto-association” is due to the equality

of input and output layers. The dashed arrows indicate that this auto-associative architecture

must be used recursively (Pollack 90). Certain node values from the hidden and output layer

are fed back to the input data until the network has reached a steady state.

This is achieved by training the network through backpropagation so it learns an identity

function F : x → x′, where x, x′ ∈ Rn. A node vector is compressed by using the function

Fc : x→ z. Then, the compressed representation is reconstructed using the function Fr : z→
x. The node vector x′ is thus an approximated output equal to x. The network is trained by

presenting the input vectors repeatedly, one vector at the time. In the next section, we depict

how we use F to measure similarity between r and c, expressed by drc.

6.3 From symbolic to subsymbolic similarity

In Section 1.3.1, we stated that service and business activity descriptions can be more or less

similar, and that similarity is a selection criterium. In Section 2.5, we furthermore explained the

long-term zero-profit equilibrium phenomenon as reason for a likely proliferating number of

competing services with similar functionality. In Chapter 3, we presented semantic techniques

which rely on syntactic and formal-semantic similarity of concepts for service discovery, for

example based on input or goal definitions. In Chapter 5, we introduced matching techniques
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output vector x‘ (output layer)

input vector x (input layer)

hidden vector z (hidden layer)

x1

x2

.

.

.

xg

input data

Figure 6.1: General LRAAM network architecture.

used to find similar concepts. Similarity is thus a fundamental concept to us. Its application to

our context is depicted in more detail in what follows.

General aspects

In (Lin 98), similarity is approached as follows:

• Similarity between a thing A and a thing B is related to their commonality. The more

commonality they share, the more similar they are.

• Similarity between a thing A and a thing B is related to the differences between them.

The more differences they have, the more dissimilar they are.

• Maximum similarity between a thing A and a thing B is reached when A and B are

identical, no matter how much commonality they share.

It is aligned to the notion of dissimilarity and distance given in (Euzenat and Shvaiko 13),

where for a set o of entities, a dissimilarity δ : o × o is a function from a pair of entities, such
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6.3 From symbolic to subsymbolic similarity

that

∀x, y ∈ o, δ(x, y) ≥ 0 (positiveness or dissimilarity)

∀x ∈ o, δ(x, x) = 0 (minimality or maximum similarity)

A distance (metric) δ : o × o is then a dissimilarity function satisfying the following con-

ditions:

∀x, y ∈ o, δ(x, y) = 0 iff x = y (definiteness or maximum similarity)

∀x, y, z ∈ o, δ(x, y) + δ(y, z) ≥ δ(x, z) (triangular inequality or dissimilarity)

From conceptual (dis)similarity to an LRAAM-based distance measure

Ontological descriptions of business requirements lead to the conceptualization r. Ontological

description of services lead to the conceptualization c. Both conceptualizations can be analyzed

for similarity (cf., Sect. 3.3).

Specifically, we state that r = x, c = y, and r, c ∈ o = {R,C}. Then, we have a distance

measure (or dissimilarity function) δ(x, y) → d(r, c) → drc = r × c ∈ [0, u] with u ∈ R.

Thereby, d pertains, first, to the similarity of class or relation labels, and second, also to how

classes are related, i.e., to the graph structure of r and c.

First, the similarity of labels (class or relation) could for example be calculated by string-

based methods. These methods take advantage of the structure of the symbol string (cf., Ham-

ming distance, Sect. 4.2). They for example would identify class labels, such as Book and

Textbook as more similar than Book and Volume (Euzenat and Shvaiko 13).

The similarity of how classes are related could (2) be calculated based on the ontological

graphs’ topologies (cf., Graph-based matching, Table 5.2). For example, the similarity of two

graphs can be expressed by a graph edit distance (ged). In (Zheng et al. 13), it is described as

the minimum number of primitive operations (e.g., insert, delete, substitute vertices or edges)

needed to transform a graph g1 to g′1, such that g′1 = g2, denoted by ged(g1, g2). Note that

ged is a dissimilarity measure, measuring the shortest operation sequence length. In other

words, fewer operations result in a smaller distance (metric), and hence in a higher graph

similarity. The problem of ged however is that versions of the algorithms are exponential as

graphs grow (Koutra et al. 11). It is thus not easily applicable to large graphs.

As stated before, with the LRAAM we explore a different approach to similarity. We do not

directly operate on symbols or graph topologies. Again, we rather use the fact that the LRAAM
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learns patterns, which are sensitive to the graph they represent. This sensitivity includes vertex

or edge labels and the graph topology at the same time.

6.4 Integrating the LRAAM matching method

Each r ∈ R and c ∈ C corresponds to a directed acyclic graph G = (V,E). Their entities,

such as classes or properties are represented as vertices (V ), the connections among them as

edges (E) (Eder and Wiggisser 07). The vector z ∈ Rm serves as comparison pattern and Z =

[z1, z2, . . . , zĝ, . . . , zg]T as a collection of comparison patterns. Thereby, g is the number of

vertices in G. Furthermore, ĝ is the number of vertices stemming from the sequence ontology,

which are by construction present in r and c (cf., Fig. 4.4). Consequently, they correspond to

Zĝ
r , respectively Zĝ

c . From Section 6.1, it is known that these collections contain subsymbolic

(i.e., micro-semantic) information about the complete collections Zr and Zc, notwithstanding

the number of vertices in r or c. Therefore, they can be used to calculate an Euclidean distance

among an equal amount of zr and zc, namely ĝ, corresponding to drc. The ontological distance

between r and c is thus defined as:

drc =

√√√√ ĝ∑
i=1

(zir − zic)2

The experimental implementation of the LRAAM is further specified in Figure 6.2. Each

vertex within G serves as a single input vector x = (x1, x2, . . . , xn) ∈ Rn. By extension,

X = [x1, x2, . . . , xg]T , the collection of vertex vectors for a specific r, respectively c, comprises

the complete input data to the network.

To obtain z of a vertex, part of the input (output) vector is allocated to represent the ver-

tex label and the existence of pointers (edges) p to connected vertices. There are q pointer

slots reserved, where q = max{degree(v)}, with v ∈ V . The input vector is composed of

th + q · m → Rn elements, where th is the number of elements used to represent vertex in-

formation (label plus pointer existence), and m is the number of elements used to represent

pointer values. If a vertex has less than q pointers, a nil pointer is used (Ellingsen 97). The

hidden representation z of a specific vertex is understood as the pointer for that vertex. As part

of other input vectors, it will thus be used as pointer and iteratively fed to the network. Eventu-

ally, we obtain the collection Z of fixed-sized vectors which represents all ontological entities.
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label
pointer

condition

, ) , )

, ) , )

real value in range [-1,1]

Figure 6.2: Experimental LRAAM implementation.

For each reference ontology r, we can thus determine the most similar compound ontology c

by choosing c ∈ C, such that d(Zĝ
r ,Zĝ

c), ∀r ∈ R, ∀c ∈ C : Zĝ
r × Zĝ

c → Rm is minimized.

In a final step, c is selected for effective integration. Again, the assumption is that the

selected service sequence ss′ is semantically closer to the sequence of activities aa′ and thus

better suited to support it. By extension, data attributes of s and s′ should more easily map

each other, e.g., by symbolic matching techniques, such as described in Section 5.3.

The next chapter specifies the algorithm as it is implemented to achieve the collaboration

of the symbolic and distributed approaches described before.
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The LRAAM-based matching
algorithm

In order to test the above described scenario, a tool – OntoProc – was developed. OntoProc

runs GSSC as described in Chapter 4. It also executes the LRAAM matching method (cf.,

place holder algorithm 4.2.4). We call the corresponding algorithm LDIST. LDIST receives,

transforms, and processes r and c. Specifically, it computes distance values for drc. To this

end, OntoProc instruments the open source library Neuroph1. The latter realizes the LRAAM

topology.

7.1 Definition of parameters and variables

In general, OntoProc receives the following input data:

• A process ontology and two or more service ontologies in order for OntoProc to construct

r ∈ R and c ∈ C (GSSC).

• LRAAM specific input parameters (LDIST, inferred from (Ellingsen 97)):

– ϵ: total error to reach before training stops.

– η: backpropagation learning rate.

– σz: slope of hidden layer activation function φ(υ) = 1/(1 + eσzυ), with υ the sum

of input to the unit.

1http://neuroph.sourceforge.net/
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– σh: slope of the activation function φ(υ) = 1/(1 + eσhυ) of the label part of

input/output vector x, being xh.

– σp: slope of the activation function φ(υ) = 1/(1 + eσpυ) of the pointer part of

input/output vector x, being xp.

– m: freely defined number of hidden layer nodes, with m < |x|. Note: It determines

the size of the input vector x (cf., Fig. 6.2).

Based on this input data, OntProc initializes the following variables in order to execute

LDIST presented thereafter:

• Vr = {vr}, the set of vertices of the reference ontology, where vr is a vertex in the graph

representation of reference ontology r ∈ R.

• Vc = {vc}, the set of vertices of the compound ontology, where vc is a vertex of the

graph representation of compound ontology c ∈ C.

• Evr = {v′r}, such that an edge starts from vr and ends at v′r.

• Evc = {v′c}, such that an edge starts from vc and ends at v′c.

• q ← maxOutDegree(Vr ∪ Vc), the maximum number of connection slots to include in

the input and output vectors of the LRAAM.

• lmax ← maxLabelLength(Vr ∪Vc), the maximum number of {−1, 0, 1} values required

to encode the labels of the vertices.

• th = q + lmax, the number of {−1, 0, 1} values required in the input and output vectors

to encode the different vertices.

• tp ← m · q, the number of real values required in the input and output vectors to encode

the connections between vertices (pointers).

• zivr is the reduced representation of vertex vr ∈ Vr at the beginning of a training iteration.

It is a vector of m values.

• zovr is the reduced representation of vertex vr ∈ Vr at the end of a training iteration. It is

a vector of m values.
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• xi
vr = (xi

h,vr
,xi

p,vr) is the input vector of vertex vr ∈ Vr at the beginning of a training

iteration, where xi
h,vr

is a {−1, 0, 1} value vector encoding the label and pointer condi-

tions of vertex vr and xi
p,vr is a real vector encoding the pointers outgoing from vertex

vr.

• xo
vr = (xo

h,vr
,xo

p,vr) is the output vector of vertex vr ∈ Vr at the beginning of a training

iteration, where xo
h,vr

is a {−1, 0, 1} value vector encoding the label and pointer condi-

tions of vertex vr and xo
p,vr is a real vector encoding the pointers outgoing from vertex

vr.

• zivc is the reduced representation of vertex vc ∈ Vc at the beginning of a training iteration.

It is a vector of m values.

• zovc is the reduced representation of vertex vc ∈ Vc at the end of a training iteration. It is

a vector of m values.

• xi
vc = (xi

h,vc
,xi

p,vc) is the input vector of vertex vc ∈ Vc at the beginning of a training

iteration, where xi
h,vc

is a {−1, 0, 1} value vector encoding the label and pointer condi-

tions of vertex vc and xi
p,vc is a real vector encoding the pointers outgoing from vertex

vc.

• xo
vc = (xo

h,vc
,xo

p,vc) is the output vector of vertex vc ∈ Vc at the beginning of a training

iteration, where xo
h,vc

is a {−1, 0, 1} value vector encoding the label and pointer condi-

tions of vertex vc and xo
p,vc is a real vector encoding the pointers outgoing from vertex

vc.
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7.2 The matching algorithm

LDIST is defined below. Its final result are values for the distance measure drc for each pair

r × c. Again, these values are used by GSSC (cf., 4.2.1) for subsequent global optimization.

For readability, we divided LDIST into several parts:

7.2.1 Input/output specification

Algorithm 7.2.1: LDIST - general specifications

Goal : Determine semantic (ontological) distance of each pair of reference and
compound ontologies by means of a “Labelled Recursive Auto-Associative
Memory.”

Input :

• Ontology-specific: Vr = {vr}, Vc = {vc}, Evr = {v′r} Evc = {v′c},

• LRAAM-specific: ϵ, η, σz , σh, σp, m:

Output : drc

Logic :

1 LDIST - initialize vr // Algo. 7.2.2

2 LDIST - initialize vc // Algo. 7.2.3

3 LDIST - create LRAAM instance for r ∈ R, initialize first input vector // Algo. 7.2.4

4 LDIST - create LRAAM instance for r ∈ R, initialize first output vector // Algo. 7.2.5

5 LDIST - train LRAAM for r // Algo. 7.2.6

6 LDIST - create LRAAM instance for c ∈ C, initialize first input vector // Algo. 7.2.7

7 LDIST - create LRAAM instance for c ∈ C, initialize first output vector // Algo. 7.2.8

8 LDIST - train LRAAM for c // Algo. 7.2.9

9 LDIST - compute distance drc // Algo. 7.2.10
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7.2.2 Vertex initialization vr

Algorithm 7.2.2: LDIST - initialize vr

We initialize the first reduced representation of each vertex of the reference ontology with
random values.

1 foreach vr ∈ Vr do
2 for i from 0 to m (excl.) do
3 zovr [i]← a real random value in range [−1, 1].

7.2.3 Vertex initialization vc

Algorithm 7.2.3: LDIST - initialize vc

We initialize the first reduced representation of each vertex of the compound ontology. For
those vertices which correspond to an element of the sequence ontology, we use zovr from
the corresponding vertex vr in the reference ontology. Otherwise, we use random values.

1 foreach vc ∈ Vc do
2 if vc is a vertex from the sequence ontology then then
3 vr ← the corresponding vertex in the reference ontology.
4 zovc ← zovr .

5 else
6 for i from 0 to m (excl.) do
7 zovc [i]← a real random value in range [−1, 1].
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7.2.4 Create LRAAM instance for r ∈ R (initialize first input vector)

Algorithm 7.2.4: LDIST - create LRAAM instance for r ∈ R, initialize first input vector

We initialize the input vector in order to bootstrap the training process. We only need to
initialize the label value to its binary representation, replacing 0 by −1, and using 0 as
padding, and the pointer conditions to 0 or 1.

1 foreach vr ∈ Vr do
2 xi

h,vr
[0, lmax − 1]← binary representation of the label of vertex vr, replacing each

0 by −1, then padding with 0.
3 for i from 0 to ||Evr || (excl.) do
4 xi

h,vr
[lmax + i]← 1

5 for i from ||Evr || to n (excl.) do
6 xi

h,vr
[lmax + i]← 0

7.2.5 Create LRAAM instance for r ∈ R (initialize first output vector)

Algorithm 7.2.5: LDIST - create LRAAM instance for r ∈ R, initialize first output vector

We initialize the first output vector in order to bootstrap the training process. We only need
to initialize the nil vectors to random values for the output vector.

1 foreach vr ∈ Vr do
2 for i from ||Evr || to n (excl.) do
3 for j from 0 to m (excl.) do
4 xo

p,vr [th + i ·m+ j]← a real random value in the [−1, 1] range.
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7.2.6 LRAAM training for r ∈ R

Algorithm 7.2.6: LDIST - train LRAAM for r

We start the training process of the LRAAM at this point. We perform the training loop
until the ending conditions are reached, that is, the error is below the expected threshold.

1 ∆←∞
2 while ∆ ≥ ϵ do

We initialize the input vector of the current iteration using the output vector and the
reduced representations from the previous iteration.

3 foreach vr ∈ Vr do
We replace the pointer of each vertex with the last calculated reduced
representation of that vertex.

4 i← 0
5 foreach v′r in Evr do
6 xi

p,vr [i ·m, ((i+ 1) ·m)− 1]← zov′r // replacing the pointer
7 i← i+ 1

8 We copy all nil pointers from the previous output vector into the current
input vector.

9 xi
p,vr [i ·m, (n ·m)− 1]← xo

p,vr [i ·m, (n ·m)− 1] // copying nil pointers

10 zivr ← zovr

We train the LRAAM.

11 The LRAAM is trained by backpropagation with input vector set {xi
vr}.

After training, we update the output vectors using the newly trained LRAAM.
12 ∆← 0
13 foreach vr ∈ Vr do
14 xo

vr ← outputLayer(LRAAM (xi
vr))

15 zovr ← hiddenLayer(LRAAM (xi
vr))

16 ∆← ∆+ euclidianDistance(zivr , z
o
vr)
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7.2.7 Create LRAAM instance for c ∈ C (initialize first input vector)

Algorithm 7.2.7: LDIST - create LRAAM instance for c ∈ C, initialize first input vector

We initialize the input vector in order to bootstrap the training process. We only need to
initialize the label value and the pointer conditions to 0 or 1.

1 foreach vc ∈ Vc do
2 xi

h,vc
[0, lmax − 1]← binary representation of the label of vertex vc, replacing each

0 by −1, then padding with 0.
3 for i from 0 to ||Evc || (excl.) do
4 xi

h,vc
[lmax + i]← 1

5 for i from ||Evc || to n (excl.) do
6 xi

h,vc
[lmax + i]← 0

7.2.8 Create LRAAM instance for c ∈ C (initialize first output vector)

Algorithm 7.2.8: LDIST - create LRAAM instance for c ∈ C, initialize first output vector

We initialize the first output vector in order to bootstrap the training process. We only need
to initialize the nil vectors to random values for the output vector.

1 foreach vc ∈ Vc do
2 for i from ||Evc || to n (excl.) do
3 for j from 0 to m (excl.) do
4 xo

p,vc [th + i ·m+ j]← a random value in the [−1, 1] range.
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7.2 The matching algorithm

7.2.9 LRAAM training for c ∈ C

Algorithm 7.2.9: LDIST - train LRAAM for c

We start the training process of the LRAAM at this point. We perform the training loop
until the ending conditions are reached, that is, the error is below the expected threshold.

1 ∆←∞
2 while ∆ ≥ ϵ do

We initialize the input vector of the current iteration using the output vector and the
reduced representations from the previous iteration.

3 foreach vc ∈ Vc do
First we replace the pointer of each vertex with the last calculated reduced
representation of that vertex.

4 i← 0
5 foreach v′c in Evc do
6 xi

p,vc [i ·m, ((i+ 1) ·m)− 1]← zov′c .
7 i← i+ 1.

We copy all nil pointers from the previous output vector into the current
input vector.

8 xi
p,vc [i ·m, (n ·m)− 1]← xo

p,vc [i ·m, (n ·m)− 1].

9 zivc ← zovc

We train the LRAAM

10 The LRAAM is trained by backpropagation with input vector set {xi
vc}.

After training, we update the output vectors using the newly trained LRAAM.

11 ∆← 0
12 foreach vc ∈ Vc do
13 xo

vc ← outputLayer(LRAAM (xi
vc))

14 zovc ← hiddenLayer(LRAAM (xi
vc))

15 ∆← ∆+ euclidianDistance(zivc , z
o
vc)
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7. THE LRAAM-BASED MATCHING ALGORITHM

7.2.10 Calculate distance drc

Algorithm 7.2.10: LDIST - compute distance drc

We calculate the Euclidean distance.

1 drc ← 0
2 foreach vc ∈ Vc do
3 if vc is a vertex from the sequence ontology then
4 vr ← the corresponding vertex in the reference ontology.
5 drc ← euclidianDistance(zovr , z

o
vc)

6 Return drc

7.3 Relation to the global algorithm GSSC

After calculation of each individual distance drc, GSSC (cf., Algo. 4.2.4, computeDistance-

Matrix) constructs the distance matrix D, and thereafter the optimal set of services to support

all related business requirements (i.e., the business process). Alternatively, we could calculate

only the distances required as the branch and bound process of GSSC proceeds.

In the next chapter, we describe several experiments to investigate the above proposed

matching method.
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Experimental methodology and results

The following sections describe our methodological approach to test the use of LRAAM for

calculating the distance measure drc. It is followed by a presentation of the experiments’

results.

8.1 Experimentation setup

We conducted two experiments. The first experiment is divided into a preliminary and three

main phases. With OntoProc, we seek LRAAM parameters which maximize classification

performance. The second experiment is separated into two sub-experiments. Those two ex-

periments apply parameter combinations found in the first experiment to more complex input

data. The two sub-experiments are aligned to the running example.

8.1.1 Introductory experiment

This experiment uses simple input data to investigate the LRAAM’s classification performance.

Preliminary phase

In the preliminary phase, the input data is prepared. It consists of a set of xml-based files,

namely a set of process and service ontologies. The ontological standard is OWL. We use the

Protégé editor1 to create these files.

1http://protege.stanford.edu/
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8. EXPERIMENTAL METHODOLOGY AND RESULTS

OntoProc receives a process ontology with two activities and their order. Each activity is

described by exactly one label. The labels are CreditChecking and CreditApproving (cf.,

Fig. 8.1).

Activity

CreditChecking CreditApproving

Figure 8.1: Experimental process ontology

Furthermore, two simple service ontologies are prepared. Each service is described by

exactly one label. The labels are also CreditChecking and CreditApproving (cf., Fig. 8.2).

Service

CreditChecking

Service

CreditApproving

Figure 8.2: Experimental service ontologies

The three ontologies are loaded into OntProc, which generates three new ontologies, namely

the reference ontology r : CreditChecking x CreditApproving, and two compound ontolo-

gies c1 : CreditApproving x CreditChecking & c2 : CreditChecking x CreditApproving.

Note that at this point the LRAAM’s classification performance is explored. The experiment is

thus not extended to more than two related activities, hence multiple reference ontologies.
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8.1 Experimentation setup

In a further step, the ontologies r and ci are used to implement the LRAAM to calculate

drci , with i = {1, 2} for further analysis. For this, the following variables are defined:

• w: the expected winning service, with w ∈ {1, 2}. For the controlled experiment, we

expect w = 2, as r ≡ c2.

• di: distance of service combination ci, with i = {1, 2}, and r.

• dw: distance of expected winning service combination cw and r

• ri: ranking of service combination i out of all combinations.

• rw: ranking of expected winning service combination out of all combinations.

• b: 1 if correctly matched, i.e., w = 2, 0 otherwise.

Phase 1

In Phase 1, the relationship between the LRAAM input parameters ϵ, η, σz, σh, σp,m and out-

put di is analyzed. For each parameter, interval and tick size is fixed to explore reasonable, yet

limited, parameter combinations within LRAAM’s large state space. Tick size is the value of

each increment of the parameter value from lowest to largest value in the interval. For example,

an interval from 0 to 10, with tick size of 5 would test values in the set {0, 5, 10}.
In this phase, the following parameter intervals and tick sizes are fixed:

• Epsilon (ϵ): interval [0.15,0.25], increment 0.05

• Learning rate (η): interval [0.1,0.3], increment: 0.1

• Hidden Layer Slope (σz): interval [0.5,1.5], increment: 0.5

• I/O Layer Binary Slope (σh): interval [5,7], increment: 1

• I/O Layer Real Slope (σp): interval [0.5,1.5], increment: 0.1

• Number Hidden Layer Nodes (m): interval [15,75], increment: 5

All parameter values are recombined with each other. To control processing time, one

LRAAM instance per combination is executed. It yields di as ci is compared to r. A list of

di for all combinations is the result. On it, a multiple linear regression is conducted in order
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8. EXPERIMENTAL METHODOLOGY AND RESULTS

to identify the parameters having a significant correlation with di. These parameters will be

analyzed further in subsequent phases. The other parameters are then fixed heuristically at

a value which maximizes b for dw (i.e., the number of good classifications). At this point,

classification performance is not yet evaluated.

Phase 2

In Phase 2, we further explore the impact of parameters with a significant correlation with di.

Specifically, the interval is increased and the tick size is decreased. More of LRAAM’s state

space is thus explored, this time to find optimal parameter values. All resulting parameter val-

ues are recombined with each other. Similar to Phase 1, one LRAAM instance per combination

is executed to yield di. A list of di for all combinations is the result. Based on this list, each

variable parameter is heuristically analysed for promising values, i.e., which maximize b for

dw. Classification performance is still not evaluated.

Phase 3

In Phase 3, 2000 LRAAM runs are executed for these promising values found in Phase 2. Each

combination results in a list of 2000 · di, which is analysed for classification performance.

Specifically, each list is transformed by assigning a ranking ri to di. The smallest of two di per

run is given a ranking ri = 1. The other ranking (ri = 2) is, furthermore, transformed into a

weighted ranking, normalized over the maximum distance spread over all runs. It gives a more

fine-tuned account of the classification performance.

The general success criteria is defined as, µrw < µri , ∀i ̸= w which in the experiment is

µr2 < µr1 . In other words, the mean ranking of the expected winning service combination cw

must be smaller than the respective means of all other service combinations ci.

If a list respects the criterium, it is selected and tested for statistical significance. To this

end, an independent samples t-test is used, as the sample groups i are independent of each

other. If the null-hypothesis (α = 0.05) can be rejected, dw is correctly classified. In that case,

the best combination of services (c) to support related business activities (r) could be identified.

8.1.2 Running example experiments

For both following sup-experiments (e1 and e2), we add an additional service ontology. For

convenience, we name the existing services s1, s2, and the new service s3. It stands for the more
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8.1 Experimentation setup

sophisticated credit checking service. In the first sub-experiment, we feed the process ontology

(p1) from the introductory experiment. In the second sub-experiment, we use a different process

ontology (p2). It stands for a different business requirement.

Preliminary phase

e1 : OntoProc uses p1 and s1, s2, and s3. s3 contains an additional concept Awesome

BigDataRiskCalculation as subclass (cf., Fig. 8.3). It shall simulate a more sophisticated

scoring service offering.

Service

CreditChecking2.0

AweSomeBigData

RiskCalculation

Figure 8.3: Alternative service for selection

The four ontologies are loaded into OntoProc. From those, it generates seven new on-

tologies, namely a reference ontology r : CreditChecking x CreditApproving, and six

compound ontologies c1 : CreditApproving x CreditChecking, c2 : CreditApproving x

CreditCreditChecking2.0, c3 : CreditChecking x CreditApproving, c4 : CreditChecking

x CreditChecking2.0, c5 : CreditChecking2.0 x CreditApproving, c6 : CreditChecking2.0

x CreditChecking. Note that the set C of compound ontologies consists of all possible ser-

vice combinations.

e2 : OntoProc uses s1, s2, and s3 and p2 (cf., Fig. 8.4). For the latter, the label CreditChecking

is changed to CreditChecking2.0. Furthermore, a subclass CoolBigDataDefaultScore is

added. It is aligned to our running example, expressing a new business requirement. The

activity CreditApproving remains stable.

139



8. EXPERIMENTAL METHODOLOGY AND RESULTS

Activity

CreditChecking2.0

CoolBigData

DefaultScore

CreditApproving

Figure 8.4: Experimental process ontology (enhanced)

Similar to e1, four ontologies are loaded. OntoProc generates seven new ontologies,

namely a reference ontology r : CreditChecking2.0 x CreditApproving, and six com-

pound ontologies c1 : CreditApproving x CreditChecking, c2 : CreditApproving x

CreditCreditChecking2.0, c3 : CreditChecking x CreditApproving, c4 : CreditChecking

x CreditChecking2.0, c5 : CreditChecking2.0 x CreditApproving, c6 : CreditChecking2.0

x CreditChecking.

For both, e1 and e2, the ontologies r and ci are used to implement the LRAAM to calculate

drci , with i = {1, 2, 3, 4, 5, 6} The same variables as mentioned in the first experiment are

defined:

• w: the expected winning service, with w ∈ {1, 2, 3, 4, 5, 6}. For the controlled experi-

ment. For e1, we expect w = 5, as r ≈ c5. For e2, we expect w = 3, as r ≈ c4.

• di: distance of service combination ci, with i = {1, 2, 3, 4, 5, 6}, and r.

• dw: distance of expected winning service combination cw and r

• ri: ranking of service combination i out of all combinations.

• rw: ranking of expected winning service combination out of all combinations.
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8.2 Experimental results

• b: 1 if correctly matched, i.e., w = 5 (e1) and w = 4 (e2), 0 otherwise.

Verification phase

For e1 as for e2, similar to Phase 3 of the introductory experiment, 2000 LRAAM runs are

executed for promising values found in Phase 2 of the introductory experiment. Each combina-

tion results in a list of 2000 · di, which is analysed for classification performance. Specifically,

each list is transformed by assigning a ranking ri to di. The smallest of six di per run is given

a ranking ri = 1. Depending on the value of di, the other rankings consequently correspond to

2 to 6. We do not assign further weighting to the rankings.

The general success criteria is defined as, µrw < µri , ∀i ̸= w which in both experiments

is µr5 < µri . In other words, the mean ranking of the expected winning service combination

cw must be smaller than all respective means of all other service combinations ci.

If this criterium is respected, all lists in e1, respectively e2, must still be tested for statis-

tical significance. Again, an independent samples t-test is used, as the sample groups i are

independent of each other. If the null-hypothesis (α = 0.05) for each µri can be rejected, dw is

correctly classified. In that case, the best combination of services (c) to support related business

activities (r) could be identified.

8.2 Experimental results

The following sections describe the results for the introductory experiment, as well as for e1

and e2. We begin with the introductory experiment.

8.2.1 Introductory experiment

Phase 1

In Phase 1, a list of 12,636 di is generated, corresponding to 6,318 parameters value combina-

tions. The model summary of the conducted multiple regression is shown in Table 8.1:

The predictive capacity of η (learning rate) and m (number of hidden layer nodes) is high

as these parameters explain a large part of d’s variability (R2 = 83.8%). Both parameters

are promoted to Phase 2. As the other parameters (IO layer binary slope σh, IO layer real

slope σp) do not have a significant impact on d, they are fixed based on suggestions made
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Table 8.1: Multiple regression model summary.

Predictors R R2 Adj. R2
Std.Err.of
Est.

η 0.857 0.735 0.735 0.58527

η & m 0.915 0.838 0.838 0.45722

η & m & σh 0.949 0.900 0.900 0.35947

η & m & σh & σp 0.949 0.900 0.900 0.35935

in (Ellingsen 97). We have ϵ = 0.15 (epsilon), σh = 6 (IO layer binary slope), σp = 0.5 (IO

layer real slope), and σz = 0.5 (hidden layer slope).

For σz, σh, and σp, the values selected also yield the highest count of correctly mapped c

in the list (cf., marked area in Table 8.2).

Table 8.2: Parameter combination with highest count of correctly
mapped c (framed).

Epsilon IO layer
binary slope

IO layer
real slope

Hidden layer
slope

Correct
matches

0.15 6 0.50 0.50 29

0.20 6 1.50 0.40 26

0.20 7 1.00 0.70 26

0.15 5 1.50 0.70 25

0.25 5 1.00 0.30 25

0.25 7 0.50 0.70 25

Phase 2

In Phase 2, the interval of m and η is increased to cover more of LRAAMs state space. A list

of 6,060 di is generated, corresponding to 3,030 parameter value combinations. From this list,

zones of promising matching performance are identified (cf., Fig. 8.5 and 8.6).

The values η = {0.09, 0.20} and m = {22, 42, 105} are fixed for further processing.
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Figure 8.5: Phase 2: Correct matches for η’s tested interval.
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Figure 8.6: Phase 2: Correct matches for m’s tested interval.
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Phase 3

Based on the above values, six combination trials of 2,000 runs are executed during Phase 3.

The results are shown in Table 8.3.

Table 8.3: Classification results for fixed parameter value com-
binations.

Parameters Matches

η m c1 c2 (cw)

0.09 22 989 1,011

0.20 22 949 1,051

0.09 42 996 1,004

0.20 42 1,005 995

0.09 105 974 1,026

0.20 105 1,042 958

Except for the combinations (0.2, 42) and (0.2, 105), the classifications passed the success

criterium, namely, µrw < µri . The significance of the results is verified by an independent

samples t-test (cf., Table 8.4).

Table 8.4: t-test for significance of µrw < µri

Parameters Levene’s test t-test for equality of µ

η m F Sig. t df Sig.(2-tailed)

0.09 22 0.792 0.374 1.122 3,998 0.262

0.09 42 0.368 0.544 0.587 3,998 0.557

0.09 105 0.000 0.991 1.148 3,998 0.251

0.20 22 2.232 0.135 3.025 3,998 0.002∗

∗ H0 rejected.

The first three parameter combinations shown in Table 8.4 do not indicate a significant

classification success. However, for the parameter combination (0.20, 22), a very low p-value

of 0.002 could be identified. It suggests that the mean ranking of compound ontology c2 = 1.89

is significantly different from the mean ranking of c1 = 2.02. With α = 0.05, in this case, the
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null-hypothesis is thus rejected. In other words, with 2,000 runs, the combination correctly

classifies the input. However, SPSS only allows for 2-tailed t-tests, whereas we are interested

only in the left tail of the t-distribution. Since the t-test supposes a symmetrical distribution, in

this case, the “significant” tail will reflect significance at p/2 = 0.025 or below1. As 0.002 <

0.025, the validity of rejection holds.

8.2.2 Running example experiments

For obvious reasons, namely the significance result, we ought to use the parameter combination

(0.20, 22). However, we also test three other promising parameter combinations, namely (0.09,

22), (0.09, 42), and (0.20, 42). It is due to the non-deterministic nature of the LRAAM. We

seek a better understanding of OntoProc’s behavior.

Verification phase e1

Based on the above parameter combination, four combination trials of 2,000 runs are executed.

The results are shown in Table 8.5.

Table 8.5: Classification results for fixed parameter value combinations.

Parameters Matches

η m c1 c2 c3 (cw) c4 c5 c6

0.09 22 591 223 589 197 195 205

0.20 22 602 194 627 155 211 211

0.09 42 833 83 860 70 58 49

0.20 42 889 55 903 46 82 63

Except for the combination (0.09, 22), the classifications passed the success criterium,

namely, µrw < µri , with i = {1, 2, 4, 5, 6} (marked bold). The significance of the results

is verified by an independent samples t-test. In Table 8.6, for each parameter combination, and

for each combination r and ci per parameter combination, significance tests are conducted and

shown2.

1http://www-01.ibm.com/support/docview.wss?uid=swg21476176 (visited May 19, 2015).
2For convenience, we do not show Levene’s test for independence of variance anymore.
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Table 8.6: t-test for significance of µrw < µri , with w = 3

Parameters t-test for equality of µi

η m
µr3 < µr1 µr3 < µr2 µr3 < µr4 µr3 < µr5 µr3 < µr6

t Sig. t Sig. t Sig. t Sig. t Sig.

0.20 22 0.608 0.543 28.168 0.000 32.099 0.000 28.728 0.000 29.133 0.000

0.09 42 0.791 0.429 51.778 0.000 58.073 0.000 51.252 0.000 58.782 0.000

0.20 42 0.380 0.704 59.629 0.000 67.047 0.000 61.025 0.000 65.690 0.000

For all parameter combination, the test rejects H0, except for c1 (marked bold). However,

our success criterium dictates significance against all ci. Therefore, despite a good classi-

fication for certain parameter combinations at first glance, overall significance could not be

established.

Verification phase e2

Based on the same parameter combination as used in e1, four combination trials of 2,000 runs

are executed. The results are shown in Table 8.7.

Table 8.7: Classification results for fixed parameter value combinations.

Parameters Matches

η m c1 c2 c3 c4 c5 (cw) c6

0.09 22 591 196 567 223 221 202

0.20 22 576 207 581 212 219 205

0.09 42 767 152 726 107 140 108

0.20 42 762 130 760 98 137 113

The expected winner, c5, is not correctly classified. Significance tests are not necessary.

Overall, we can state that the experiments show inconclusive results. In the next chapter, we

discuss major reasons for this. These reasons might serve as entry point for further research. To

this end, we mention immediate changes to the experimental setup. We also suggest conceptual

changes, which we deem promising in the longer run. Eventually, we give an answer to the

second research question.
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9

Discussion of the matching algorithm

With the implemented LRAAM oracle, we conducted experiments to verify similarity of ser-

vice descriptions. During the experiments, we could identify some interesting results. For a

simple use case (i.e., introductory experiment), significance under certain conditions was estab-

lished. For more complex data input in experiment e1 classification yielded apparent positive

results. However, overall significance could not be verified. Experiment e2 did not return pos-

itive classifications at all. However, for each parameter combination, we saw higher values of

c5 in e2 than in e1. It might indicate a tendency towards the right classification.

Hence, the results lead us to conclude that OntoProc needs further development and prun-

ing.

In the next section, we depict several points where further immediate investigation is

needed. Thereafter, we offer a research venue to address those points on a more general level.

We conclude the chapter by restating and answering the second research question.

9.1 Architectural considerations

With respect to the LRAAM topology which is responsible for the mixed results, the following

points caught our attention:

• Regarding the sigmoid activation function, we anticipated a higher impact of σ on d. In

the multiple regression analysis, this could however not be shown. It warrants further

analysis.
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• The significant parameter combination (0.2, 22) of the introductory experiment leads to

a ratio m/n = 22/151 = 0.15. Based on (Ellingsen 97), a good classification perfor-

mance was expected at a higher ratio of m/n ≈ 0.25. It would thus suggest a higher

number of hidden layer units for good results.

• For all experiments, each c and r contains same labels by default, namely those repre-

senting the sequence ontology, which we use to calculate the Euclidean distance. In the

introductory experiments, only two specific labels are added to construct c, respectively

r. In e1 and e2, one further label is used. These labels may not have sufficient impact to

significantly alter LRAAM’s rather volatile steady state. In other words, distinctiveness,

which is sought, gets lost (cf., next point).

• We do not think that the current LRAAM implementation exhibits a sufficiently trustwor-

thy steady state. Instead of initializing the input vector x with values from the interval

[−1, 1], similar to (Al-Said and Abdallah 09), it may be beneficial to use a smaller inter-

val, e.g., [−0.5, 0.5], to decrease potential variability, such as described in (Sperduti 93).

• Narrowing down LRAAM’s state space is time-consuming. However, further intervals

or parameters need to be explored, also combined with the above mentioned adaptations.

One further parameter may be the number of consecutive times the LRAAM’s establishes

a steady state (expressed in Z) based on the error tolerance ϵ, before it is chosen to

calculate d. It would increase confidence in the validity of the steady state.

9.2 Adapting the LRAAM topology

The above list mainly points towards improvements of LRAAM’s existing architecture, i.e.,

tuning the activation function, varying the ratio of the number of input and hidden layer nodes,

etc. However, a further route to enhancing classification performance may reside in changing

LRAAM’s topology altogether. Specifically, the idea would be to couple the LRAAM with the

Deep Learning (DL) approach (LeCun et al. 15).

The latter represents an ANN with up to 20 hidden layers (instead of only one). In total,

such an ANN may contain tens or hundreds of thousands of units. Following (LeCun et al. 15),

a DL system can implement extremely intricate functions of its inputs that are simultaneously

sensitive to smallest variations. It exploits the property that many input signals are composi-

tional hierarchies, in which higher-level features are obtained by composing lower-level ones.
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The authors continue to state that similar hierarchies exist in speech and text from sounds to

phones, phonemes, syllables, words and sentences. Clearly, this may prove beneficial to our

research.

Finally, for DL, poor local minima are rarely a problem. Notwithstanding the initial condi-

tions, i.e., the initialized random values, the system mostly reaches high quality solutions. To

us, it could not only translate into a much more stable and trustworthy steady state Z. It may

also provide us with more comparable details on z, as z itself would be decomposed into dif-

ferent hierarchies (corresponding to the number of hidden layers we would define to describe

the compositional hierarchy of a pointer).

Bringing DL and LRAAM together thus seems a promising research venue.

9.3 LRAAM as alternative matching method

With the second research question we asked:

Other than classical symbol-based ontology matching, is an LRAAM, specifically its dis-

tributed patterns, a reliable alternative matching technique as part of an intelligent service

selection and integration method?

Based on the experimentation, the current setup of the LRAAM does not allow for reliable

service selection through vector matching. As mentioned above, the net’s steady state is too

volatile and susceptible to initial conditions, at least with respect to how we chose to initialize

the input. Currently, we thus cannot positively answer the above question. However, the DL

venue, briefly introduced above, would seemingly address the major points of criticism, namely

volatility or sensitivity. Further investigations in this direction might yield better outcomes.

In relation to the this question, let’s also remember that we could not answer the first

research questions with yes, namely,

Can ontologies stand-alone, that is, in isolation, be used for an intelligent service selection

and integration method?

It was due to the outlined restrictions of symbolic approaches as it concerns “intelligent”

behavior of systems. However, if above issues were addressed by a combination of the LRAAM
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and the DL approach, this questions could also be looked at again. Hypothetically with such

DL-LRAAM, unrestricted formal semantic descriptions of services would be set up. They

would also merely be submitted to the language, such as OWL itself, but no further doctrine

structure (such as WSMO, or SAWSDL), except for some key concepts. A DL-LRAAM could

then reliably transform the complete representation (as investigated here) or perhaps only parts

thereof for comparison. Based on (LeCun et al. 15), it could conduct a very sensitive matching

of concepts, moving from the concept label to neighboring concepts, to embedding sub-graphs,

to the complete representation, if necessary.

Thereby, it would only be relevant how detailed the descriptions are to “triangulate” their

semantics, so to speak. In other words, where a single concept might be misinterpreted (e.g.,

a potential synonym, such as “Apple”), the same concept connected to another concept (e.g.,

“company”) becomes less ambiguous. With each additional concept related to the first concept,

the risk of misinterpreting it as a fruit further decreases.

In general, we think such an approach would give the system more freedom for decision

making, thereby almost simulating how humans would learn, recognize, and analyse (integra-

tion) features, should they change.
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Conclusions

In this thesis, we introduced a service selection and composition (SSC) approach towards more

intelligent, i.e., automatic yet flexible, integration of applications consumed as loosely coupled

services. We discussed its necessity for organizations to cope with an increasing number of

modularized, decentralized, and most importantly, similar services from which to choose. This

services proliferation is due to the phenomenon of long-term-zero profit equilibrium, which we

discussed and mentioned in Sections 1.1, 2.5, and 6.3.

We emphasized standardization and flexibility. On the one hand, standardization supports

automation. Automation in turn helps decreasing human expert intervention. Beyond the direct

cost and error factors, this would also mitigate the negative, again costly, effects of colliding ex-

perts’ beliefs and perceptions (cf., Sect. 2.2). On the other hand, flexibility allows for quick on-

and offboarding of services. It is needed to keep pace with ever more unforeseeable situations

organizations face.

From Chapter 2, we learned that current syntactic integration techniques do not adequately

respond to this challenge. They merely regulate information and focus on meta-data exchange.

They strongly rely on human expert intervention. As other authors (e.g., (Born et al. 07,

Fensel et al. 11)), we believe that ontologies, written in a language such as OWL, may bet-

ter lend themselves as SSC building blocks. They stand for well-structured, formal-semantic

knowledge representations. Those can be used by business experts to describe corporate busi-

ness activities and by service providers to describe service offerings (cf., Chap. 3). Machines

can then compare them through inferential matching (specifically cf., Sect. 3.3.3, 3.3.4, or for

a wrap-up, Chap. 5). Clearly, it is a reasonable conjecture that an ontology describing a credit

checking activity uses similar entities and relations as the needed credit checking service itself
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(provided that the same natural language is used to tag concepts in the ontology). Both possibly

contain concepts, such as Person or CreditRegister including a relation hasEntry. In turn, an

ontology describing a weather forecast service most probably does not include these concepts.

The symbolic fallacy: Ontology approaches are situated in the symbolic paradigm though.

They situate on top of current industry standards such as WS and SOA. Instinctively, adoption

and reusability seems a natural way to go. However, ontologies are still mere abstract symbol

instances. Those do not convey an internal structure which is in any way relevant to its use (cf.,

Sect. 3.1). They are suitable when the property investigated is to be either identical or non-

identical to other symbol instances1. They thus “. . . need to be bound to variables in judiciously

chosen rules of inference (LeCun et al. 15).” Eventually, it limits execution, i.e., composition

paths, and therefore flexibility, which again is assumed by human experts.

Therefore, we think that purely symbolic, either syntactic or formal-semantic, approaches

will not provide us with the bridge between automation and flexibility. This is even more so in

competitive environments. Here, changes in the input data of third-party services offerings can

neither be anticipated, nor can technical control be exercised. Therefore to us, techniques such

as introduced in Chapter 3, namely SAWSDL, OWL-S, or WSMO represent an impasse. They

eventually lead into the Chinese room (cf., Sect. 3.1). Therein, automatic composition is very

much possible. However, participating systems must be endowed with the same restrictive,

syntactic meta structure (e.g., IOPEs, goals & capabilities).

Indeed, evidence for a lack of flexibility was given in Section 3.3.4: The mentioned tech-

niques are not universally applicable. They presuppose specific, relatively stable, controlled

environments, e.g., governmental ones (Kamaruddin et al. 12). To us, this fact still represents

the very problem, the techniques claim to overcome, namely rigidity instead of flexibility.

The sub-symbolic venue: Our working assumption is that the chasm between automation

and flexibility can be overcome by some sort of semantic grounding. For the context of this

work, it means that the system develops a notion of the signified, rather than merely relying on

arbitrary symbolic signifier for SSC. To this end, we investigated the non-deterministic artificial

neural network (ANN) paradigm. We follow (LeCun et al. 15), who advocates to use activity

vectors or weight matrices to enable “. . . a type of fast ‘intuitive’ inference that underlines

effortless commonsense reasoning.”

1Being the case virtually all the time.
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Specifically, we looked at the LRAAM ANN-topology, presented in Chapters 6 and 7.

Therein, knowledge representations, i.e., ontology graphs are encoded and stored in a dis-

tributed fashion over many weight vectors. We used the latter to compare the underlying onto-

logical descriptions.

We emphasized that the comparison is no more conducted with arbitrary symbolic shapes.

It is based on distributed, let’s call it “grounded” representations of (1) the concept labels, (2)

of their position in the overall ontology, and (3) as a function of all other concepts and positions

within the overall ontology as it is encoded by the LRAAM.

Experimental results: In Chapters 8 and 9, we conducted and discussed experiments with

the implemented LRAAM. We kept the experiments simple as they served us as a proof of

concept. The results were inconclusive. An introductory experiment showed significance of

a correct classification under certain conditions. Further experiments with richer input data,

thereagainst, did not yield the expected results. We identified shortcomings of, and suggested

possible improvements to the current implementation. These include stabilizing the LRAAM’s

steady state through parameter pruning, respectively the introduction of new parameters; or

merging LRAAM and Deep Learning.

Research questions and contributions Our assumption is that intelligent SCC needs to un-

derstand the meaning of services to address at the same time automation and flexibility. Under

this angle, we explored the realm of ontologies and pertaining techniques. By analysing the

pertaining body of knowledge, we concluded that they are, in isolation, not appropriate (cf.,

Sect. 3.4). The reason is the lack of true understanding due to the restriction imposed by the

symbol paradigm, and no “inner” and “own” representation of meaning. Unknown conditions

can thus only be processed to the extent they are predefined. To us, this is clearly a contradic-

tion.

However, ontologies still served our goal of more intelligent service selection and com-

position. They are part of a rather well-established domain one one can draw from (e.g., for-

malized, i.e., validated, knowledge representations). We used them to describe services and

requirements. Furthermore, we defined key ontological terms. The latter provided invariants

or anchor concepts to facilitate subsequent processing (cf., Sect. 4.1).

Where our goal reached beyond the ontology domain’s capabilities, we explored the LRAAM.

It was needed to create the above mentioned “own,” i.e., non-arbitrary representations, specifi-
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cally of services and requirements. These representations were used for comparison. However,

the current implementation did not yield the desired results. LRAAM in its currently imple-

mented form is not a reliable alternative matching technique as part of an intelligent SSC (cf.,

Sect. 9.3). Other than conceptually suggested, it does not yet yield a stable steady state ad-

equately representing the expected (i.e, supervised) output. A crucial open question is thus

how to better control the LRAAM’s behavior. Specifically, how can we create a reliable, stable

steady state? A possible answer is given below.

Final thoughts: Notwithstanding the results of our experimentations, we think that purely

symbolic approaches to automatic integration are too restrictive when independent third-party

services are concerned. Flexibility without human intervention is beyond those approaches’

capabilities. Encouraged by recent developments in the area of connectionism (i.e., Deep

Learning), we are however still convinced of the chosen research venue. We strongly advo-

cate further studies, for example with a combined Deep Learning-LRAAM matching method.

We are convinced that such an approach would resolve many encountered problems, including

the most prominent one, namely the volatility of the network’s steady state (LeCun et al. 15).

In Figure 10.1, a possibility is sketched. Instead of initializing the label part of LRAAM’s input

vector with binary information, one could use the Deep Learning approach to preprocess those

concept labels.

output vector x‘ (output layer)

hidden vector z (hidden layer)

input vector x (input layer)

Label feature vector (pixel intensity)

Label feature vector (curves)

Label feature vector (letters)

Label feature vector (syllables)

Label feature vector (label)

Figure 10.1: Deep Learning (DL) and LRAAM. Concept labels are preprocessed by DL before
participating in the input vector x.
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Eventually, we concur with (Bottou 14) and (LeCun et al. 15) for whom new paradigms

are needed to replace rule-based manipulation of symbolic expressions by operations on large

vectors.
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