Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Formal Data and Behavior Requirements Engineering : A
Scenario-based Approach

Francois Lustman Gilbert Babin
Département d’informatique et de Département d’informatique
recherche opérationnelle Université Laval

Université de Montréal Québec, Canada G1K 7P4
Montréal, Canada H3C 3J7 babin@®@ift.ulaval.ca

lustman@®@iro.umontreal.ca

January 20, 1999

1 Introduction

In requirements engineering, the use of formal methods is often limited to the result of the elicitation process, i.e., the
system specification. The main objective of the Forspec project is to use formal methods not only at the specification
level but also along the requirements elicitation process. Other objectives are to integrate data, process, and user
interface into a single formal specification. The work reported below, deals with integrating data and behavior into
a single formal specification. The requirements elicitation approach selected is scenario-based.

Scenarios have been recognized as an effective technique for eliciting requirements in general [2, 3, 7], for
investigating behavior, in particular in the object-oriented approach [10, 15, 17]. Scenario description, first informal,
has lately been overtaken by more formal graphical approaches [10, 15, 17]. Tools like finite state automata have
been used in many variations [8, 11, 19, 20]. Scenarios have also been represented as relations [5].

What does a scenario describe? Usually behavior [8, 10, 12, 15, 17], sometimes data and behavior [5, 11, 19, 20].
A common feature of the different definitions of a scenario is that it describes only part of a system. Once scenarios
are described, the next problem is to integrate them in order to obtain a system specification. In some works, the
relative position of the scenarios to integrate has to be known [5, 6, 14], in others it does not [11, 19, 20]. The
integration technique is manual [5, 6], or algorithmic [11, 19, 20], or human-assisted [12, 14].

Scenario description raises no problem anymore, as long as the description is limited to behavior. If the
description is supposed to involve data as well, definition and integration problems arise. How is data elicited and
described? How are data and behavior integrated? At the system level, several questions remain unanswered or
uncompletely answered. Which formal tool should be used to describe behavior and data in an integrated way? How
are data integrated? What about system semantic not expressed in scenarios? If an algorithm is used to integrate
scenarios, how to avoid or control potential combinatorial explosions?

While this work does not pretend to solve all the above-mentioned problems, it addresses several of them in the
specific framework, of information systems. The overall objective of the KluB approach presented below, is to use
formal techniques as much as possible to describe scenarios and to integrate them. Specific objectives are :

¢ formal modeling of data and behavior at the scenario level,

¢ introduction of system semantic through business rules,

e semantic integration of data and behavior at the scenario and system levels,
e algorithmic integration of scenarios,

o use of well-known techniques for controlling the potential combinatorial explosion.

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

The approach is limited to sequential scenarios and to one instance of each data object, one instance of each scenario.

An overview of the KluB approach is presented in Section 2, as well as an introduction to TSER, the formal
technique used to elicit and integrate data. The scenario definition and formal description used in this work, are
provided in Section 3. Section 4, Scenario Analysis, deals with semantics. Data modeling is described as is the
concept and formalism of business rules. Section 5 presents the two-steps integration process. The formal tool used
to specify a system is introduced. Then, in the first integration step, a formal method for integrating data and
behavior at the scenario level is described. The second step performs the overall data-based, system integration.
Finally, in the Conclusion (Sect. 7), potential benefits and problems are discussed and possible extensions are
presented.

2 Method Overview

2.1 Formal Framework

Basic formal tools are used for modeling the various parts of scenarios and of the system specification. Integrating
data and behavior in a single specification is a major part of this work. For data modeling, TSER (Two-stage
entity-relationship), an E/R-based model and process, well suited for data consolidation, will be used. For behavior
modeling, variations of finite state machines (FSA) are required. The behavior part of a scenario will be modeled
with state-event diagrams, while the system specification will be expressed by a guarded sequential machine. Finally
first-order predicate logic is all that is needed to express pre and postconditions and business rules.

2.2 Requirements Engineering

A major objective of the Forspec project is to integrate data and behavior in a single specification or, to state in
another way, to link the syntactical model of a scenario (the FSA) with a semantic model. The KLuB sub-project
is concerned with integrating scenarios. In this work, an extension of [11], the integration is performed not on the
scenario FSAs but on the scenarios’ semantics composed of entities and business rules. The glue for tying syntax
and semantics together is provided by relating entity states to scenario and system states.

The overall requirements engineering process, outlined in Figure 1, comprises three steps :

1. Scenario acquisition
2. Scenario analysis
3. Scenario integration

The KluB sub-project is about scenario analysis and integration, and therefore covers steps 2 and 3.

Scenario acquisition, performed on a scenario by scenario basis, is an informal step, involving analysts and
users. Because several systematic approaches for scenario elicitation are available (see [8] for example), this step is
assumed to have been performed. For the example used in this work and described below (see Section 2.3), extensive
interviews were held with users and managers, and recorded on tape.

Scenario analysis is performed scenario by scenario. It involves four steps, behavior modeling, data modeling,
data model integration, and semantics elicitation. In the scenario world, a formal process for converting the informal
requirements into a formal specification is available ([8]). As a consequence, this work does not deal with behavior
modeling of a scenario. It is assumed that for each scenario, an informal description and the corresponding FSA,
are available. Data visible in the scenario is elicited and modeled using the first stage of TSER. The step, partly
formal, results in a formal data model, and is described in Section 4.1. In the data model integration activity,
presented in Section 4.2, the data models of all scenarios are integrated, using the second stage of TSER. The result
is an entity-relationship model of all system data, in third normal form. The semantics elicitation step consists in
extracting and formalizing business rules from all relevant sources (informal description, users, procedure manuals),
and in establishing the pre- and postconditions of scenario states. The step, described in Section 4.3, is informal
but all results are formal.

Scenario integration produces the system specification. This step is formal, and consists of three activities.
Integration of data and behavior is achieved by defining a relationship between scenario states and entity values. The
process is formal as is the result (see Sect. 5.2-5.4). In the system state generation activity, described in Section 5.5,

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Scenario Analysis Scenario Integration
, Data &
Behavior Data .
Modeli Modell Behavior
odeling 7| Viodelng Integration
] 1 Y Y
Scenario | _ s Data . System
Acquisition Models States
Integration Generation
Y
| Semantics Syst.e.m
S Transitions
Elicitation ;
Generation

Figure 1: Requirements Engineering Process

entity values are incrementally combined to construct potential system states, and pruned using business rules and
scenario compatibility rules. The result is the set of system states. In the last activity, described in Section 5.6,
system transitions are generated from the scenario transitions, by considering the compatibility between transition
pre- and postconditions and system states.

2.2.1 The Two-Stage Entity-Relationship Model : TSER

The Two-Stage Entity-Relationship (TSER) [9] model was created to integrate functional analysis with database
design. It entails two levels of models : a functional model, representing semantic content, and a structural model,
forming a normalized data model. Furthermore, there are rigorous TSER algorithms which map from functional to
structural models; these algorithms ensure that the resulting structures are at least in third normal form (3NF).
TSER algorithms also integrate views, thus allowing systematic consolidation of any number of data models.

The Functional Model The functional model features semantic-level constructs for processes representation and
for object-hierarchy. These constructs are used for system analysis and information requirements modeling. The
constructs include the following :

e Subjects (fig. 2(a)) which represent functional units of information such as user views and application systems,
and is analogous to frame or object. It contains, among other things, the attributes describing the subject
(including their domains) and the functional dependencies describing relations between these attributes.

e Contexts (fig. 2(b)) which represent control knowledge and interactions among subjects.

In TSER, a functional dependency between two sets of attributes A = {ay,...,an} and A’ = {d}, ...,al,}, noted
A - A, is defined as follows :

A - A" &V(vy,...,v,) € Dom(A),3N(v},...,v;,) € Dom (A")

such that (v],...,v],) may be determined by (vy,...,v,),

where
Dom(A) £ Dom(a1) x ... x Dom(ay,)

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Subject

(a) Subject (b) Context
Figure 2: Functional Model Constructs

and
Dom (A") 2 (Dom(a}) U {L}) x ... x (Dom(al,) U {L}).
Note that the symbol L is used to represent the “undefined” value.

The Structural Model The structural model provides a normalized representation of data semantics from the
functional model for logical database design. There are four basic constructs :

e Operational entities (or entities, for short; fig. 3(a)) which refer to constructs with a singular primary key.
e Plural relationships (fig. 3(b)) which refer to constructs with a composite primary key.

e Functional relationships (fig. 3(c)) representing referential integrity constraints between entities and/or plural
relationships.

e Mandatory relationships (fig. 3(d)) representing existence dependency constraints between entities and/or
plural relationships.

ura

Entity eIaLonshl 0

(a) Operational Entity (b) Plural

N __-Fin toriat L
Fﬁa th:OnSﬁtIp

(c) Functional (d) Mandatory

Figure 3: Structural Model Constructs

Normalized structures (i.e., the structural model) are obtained directly from the functional model, using three
basic steps :

Decomposition : creates a submodel for each subject in the subject hierarchy and analyzes its basic cardinality.

Normalization : improves and simplifies the data structures within each submodel based on dependency theory.
This step yields a model at least in 3NF.

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Consolidation : links and merges these submodels to produce a structural model corresponding to the functional
model in the input. The Consolidation is performed recursively, starting from leaves in the subject decompo-
sition tree, and creating a merged model for each intermediate node.

In this research, we have opted for TSER (1) to model data within each scenario, creating one (possibly
decomposed) subject per scenario, and (2) to obtain a normalized and integrated data model from these partial
views. Section 4.1 will describe how TSER is used to produce a data model for scenario integration.

2.3 A Simple Library Example

Examples used for supporting a method, are often small and allow for the “does not scale-up” criticism. To alleviate
this, the Forspec team decided to use a real-world system to support its work. A University library system was decided
upon and part of Université de Montréal’s library system was investigated. It consisted of six scenarios, document
borrowing, document return (two scenarios), borrowing extension, reader registration, and document registration.
The average FSA for a scenario, has six states, seven entries, and ten transitions. A complete description of the
example can be found in [11]. However, for presentation purposes, a scaled down library example will be used.

The Simple Library system involves three scenarios, document borrowing, document return, reader registration.
In the borrowing scenario, a reader can borrow one or several documents. Also, the user can go directly from
the borrowing scenario to any of the two other scenarios. In the return scenario, the reader may return one or
several documents. The user may also switch directly to the borrowing scenario. In the reader registration scenario,
a potential reader is registered and provided with a reader card. From there on, it is possible to register another
reader, or to go to the borrowing scenario. A complete description of the borrowing scenario is provided in Section 3.1
below.

3 Scenario Acquisition and Behavior Modeling

3.1 Definition of Scenario

There are many definitions and uses of the scenario concept ([5, 6, 8, 10, 11, 16, 20]). For clarification purposes,
the meaning and definition of scenario used in this work is presented. It is related to the concept of transaction
introduced in [18], and used in [1, 13].

Business Task A computerized information system (CIS) is to be developed as part of an information system
(IS). A business task is an independent task or activity which is part of the IS. A business task has a beginning,
performs an activity defined by the user, and has an ending. It leaves the IS in a coherent state in the database
transaction sense.

Example 1 : the IS is a Banking system. A business task is to perform a banking transaction. The user is a
customer of the bank.

Example 2 : The IS is a Library system. A business task is to register a new document. The user is the clerk or

librarian in charge of document registration.

Scenario A scenario is defined by a user or community of users. It defines the interactions between a single user
and the CIS for performing a business task.

The basic elements of a scenario definition are :

e one or several entry points, for performing the business task;

e a set of interactions (user action, expected CIS reaction(s)). An interaction accomplishes a token-task of the
business task;

¢ the partial or complete ordering of the interactions;

e those interactions which end the scenario.

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Several aspects of the definition are worth mentionning. All elements contributing to the definition of a scenario
are provided by the user, or elicited from the user. Also, a scenario is more complex than a single sequence of
interactions. Finally, all aspects of the definition are provided by the user in terms of the IS and of the business task.
A scenario definition is elicited from the user(s) and results in an informal description. The narrative in Figure 4
for example, describes the Document borrowing scenario of the library example.

o The user wishes that the system be in the Document Loan scenario, waiting for the
reader’s ID-code.

e Also, the user wants to be able to go from there directly to the reader registration
scenario or to the document return scenario.

e If document borrowing should be performed, the user enters the reader’s ID-code. The
reader’s borrowing file should appear on the screen. It should also be possible to enter the
borrowing scenario at this point, from the reader registration scenario or the document
return scenario.

e The user enters the document’s ID-code. If the reader rights do not allow him to
borrow this type of document, the loan is not processed, and the user can go back to
document-ID entry state or to the initial state. If he has the right to borrow that type
of document, the Loan File on the screen should be updated with that new document,
and the Document’s status updated from available to borrowed.

e If more than one document is to be borrowed, the user performs the preceding step
as many times as required, or he (she) returns to the scenario’s primary entry point,
waiting for a reader’s ID-code.

Figure 4: Description of the Document Loan Scenario

3.2 Formal Scenario Model

Previous works ([8]) have shown that it is possible to formalize the process and the product of scenario formalization.
In this work, the formal model of a scenario will be assumed to be available.

The behavioral part of a scenario will be modeled by a state-event automaton, a variation of a finite state
machine, defined as follows

Mc=(Se,He,Ic,Fe,Tc)

where :

e Scis a set of states. The scenario is in a state when a system reaction is finished and the user has not entered
an event.

e Hec is the set of events. An event is a gesture exercised by the user on the interface, indicating to the system
that the user has finished entering all the elements of an action (see scenario definition in Section 3.1). An
event is labelled by the user-defined action.

e Ic is the set of initial states. Initial states correspond to user-defined entry points.
e Fcis the set of final states. Interactions defined by the user as ending the scenario, end on a final state.

e T'c C Scx He x Scis the set of transitions. Transition tc = (sc, he, s¢'), means that while the scenario was in
state sc, the user entered event hc, and one of the system’s reactions is to put the scenario in state sc'.

A state-event automaton can be represented by a state-event diagram. Figure 5 presents the state-event diagrams
for the three scenarios of the Simple Library system described in Section 2.3.

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Input
Document ID

Return to
LoanFile Screen

Reader's
LoanFile
Displayed

“No rights”
Message
Displayed

Input
Document ID

Return to
main screen

Return to

Input main screen

Reader ID

Reader
Registration
Scenario

Document
Return
Scenario

Waiting for
Reader ID

Select Select
Reader Registration Document Return
Scenario Scenario

(a) Document Loan

Select Input
Document Loan Reader Modify
Input Scenario Information Reader

Input

Document D — Document ID Document Reader Information
eturn it
Waiting for Confitmed + Loan Information
Document Waiting for Scenario

Document ID,

ID
Confirm

Select Select Information

Document Loan Document Loan Beturn to
Scenario Scenario main screen

Scenario

Scenario w/ Reader

Known
Document Loan
(b) Document Return Scenario

(c) Reader Registration
Figure 5: Transition Systems for the Scenarios

4 Scenario Analysis

In the Scenario Analysis step, performed on a scenario by scenario basis, data and other semantic information will
be elicited, and then tied to the scenario automaton. The first activity, data modeling produces a formal model
of the data entities visible in the scenario. These partial models are integrated in the second step. In the third
activity, business rules and pre- and postconditions are elicited. Finally, entity states are constructed and tied to
the appropriate scenario states. At the end of the scenario analysis step, all informations required for scenario
integration will be available, that is, entities and entity states, business rules, and correspondence between entity
states and scenario states.

4.1 Modeling Data

Data modeling consists mostly in (1) identifying the “objects” pertaining to a specific scenario, (2) the attributes
describing these “objects”, (3) the domain of these attributes, and (4) the functional dependencies among these
attributes. The analysis is based on the informal and formal descriptions of the scenario. Figure 6 presents the
resulting functional model for the Document Loan Scenario. Specifically, we identified three “objects”, namely,
Document which represents the different documents stored on the library shelves, LoanFile which represents the
information about document loans, and Reader which represents the information about library users. For each
of these “objects”, we also identified attributes used in the scenario description, their respective domain, and the
functional dependencies among them.

The next task is to create a normalized data model for each scenario. This is achieved by applying TSER’s de-
composition, normalization and consolidation steps to each scenario’s functional models, as described in Section 2.2.

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Reader-ID —
Reader Reader-rights
Document-ID — Borrows
Document-status,
Document-type
Loan-ID - Return-date,
Document Borrowed LoanFile Reader-ID,

Document-ID

Figure 6: Functional Model for Document Loan Scenario

The structural models for the three scenarios resulting from this task are presented in Figure 7. Figure 8 provides
detailed information on the attribute domaines, by entity and scenario.

At this point, we have identified all the entities' used in each scenario. The Document Loan Scenario uses three
entities (Document, LoanFile, and Reader), the Reader Registration Scenario only uses the Reader entity, and the
Document Return Scenario only uses the Document entity.

Document Borrowed LoanFile Borrows Reader
¢ Document-ID * Loan-ID * Reader-ID
Document-status Return-date Reader-rights
Document-type Borrows
Borrowed

(a) Document Loan

Reader
Document
* Document-ID * Reader-ID
Document-status Reader-data
Reader-rights

(b) Document Return
(c) Reader Registration

Figure 7: Structural Models for the Scenarios

4.2 Integrating Data Models

At this point, we produce an integrated data model using TSER’s consolidation step from the normalized data
models obtained for each scenario (Sect. 4.1). The resulting model for the Library example is illustrated in Figure 9.
Figure 10 provides the integrated attribute domains.

We must point out that entities having the same key are merged into a single entity. Furthermore, attributes’
domains are merged to obtain their complete domain.

Ifrom this point on, we will refer to an operational entity or a plural relationship as an “entity”

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Document : Document-ID : codel where codel is a set of IDs for Documents
Document-status : {available, loaned}
Document-type : {1,2}

Reader : Reader-ID : {code2, 1} where code2 is a set of IDs for Readers
Reader-rights : {all _documents,1 only, 1}

LoankFile : Loan-ID : code3 where code3 is a set of IDs for LoanFiles
Return-date : dates where dates is a set of dates
Borrows : code2 (the domain is made of reader’s Ids)
Borrowed : codel (the domain is made of document’s Ids).

(a) Document Loan Scenario

Document : Document-ID : codel
Document-status : {available, loaned}

(b) Document Return Scenario

Reader : Reader-ID : {code2, 1}
Reader-data : {strings, L} where strings is a set of strings
Reader-rights : {all _documents,1 only, L}

(c) Reader Registration Scenario

Figure 8: Attribute Domains by Entity and Scenario

Document Borrowed LoanFile Borrows Reader
¢ Document-ID ¢ Loan-ID ¢ Reader-ID
Document-status Return-date Reader-data
Document-type Borrows Reader-rights
Borrowed

Figure 9: Library Integrated Structural Model

4.3 Eliciting Scenario Semantics

In this activity, more information on the scenario and on entities will be gathered, namely, business rules and in
particular, pre- and postconditions.

4.3.1 Business Rules

From an application’s point of view, business rules define how things should be done. In banking for example, “no
withdrawal on a negative balance” is a business rule. In the academic world, “no transcript to a student who has not
paid his fees” is another example of a business rule. From a requirements engineering point of view, business rules are
constraints on data values, on functions, or on combinations of both, and are specified in predicate logic. Business
rules are obtained from users, procedure manuals, the nature of the business tasks and so on. In conjunction with
the entities, they capture the application semantic, and will be used to construct the specification. Some of the
business rules are implicit in the data model generated with TSER [9] (data integrity rules).

We define a special type of business rule, the existential rule for an entity. It is obvious that when an entity
does not exist, all its attributes have the L value. The existential rule specifies which attributes must be defined
when an entity comes into existence.

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Document : Document-ID : codel

Document-type : {1,2}

Document-status : {available,loaned}
Reader : Reader-1D : {code2, 1}

Reader-data : {strings, L}

Reader-rights : {all _documents,1 only, L}
LoanFile : Loan-ID : {code3, 1}

Return-date : {dates, 1}

Borrows : {code2, 1}

Borrowed : {codel, 1}

Figure 10: Attribute Domains for the Integrated Data Model

In the Library system the following rules have been identified.

Existential rules for the Document entity
Business Rule 7; : If the entity does not exist, all its attributes do not exist

Document-ID = 1 — Document-status = L A Document-type = L

Business Rule r; : If the Reader exists, all its attributes are defined

Document-ID € codel —(Document-status = available V Document-status = loaned) A

(Document-type = 1 V Document-type = 2)

Existential rules for the Reader entity
Business Rule 73 : If the entity does not exist, all its attributes do not exist

Reader-ID = | — Reader-data = 1 A Reader-rights = L

Business Rule r, : If the Reader exists, all its attributes are defined

Reader-ID € code2 — Reader-data € strings A (Reader-rights = all _documents V Reader-rights = 1_only)

Existential rules for the LoanFile entity
Business Rule 75 : If the entity does not exist, all its attributes do not exist

Loan-ID = 1 — Borrows = 1 A Borrowed = L A Return-date = L

Business Rule g : if the entity exists, all its attributes are defined

Loan-ID € code3 — Borrows € code2 A Borrowed € codel A Return-date € dates

Other business rules

Business Rule r; : If Reader is not registered, he (she) cannot borrow the document, and no LoanFile can exist
for him (her)

Reader-ID = 1 — Loan-ID = 1 A Borrows = L A Borrowed = 1 A Document-status = available

Business Rule rg : If a document is in a LoanFile, the document’s status must be “loaned”

Borrowed = Document-ID — Document-status = loaned

Business Rule rg : If Reader has a LoanFile, its reading rights must be compatible with the type of the loaned
document, :

Borrows = Reader-ID A Borrowed = Document-ID —Reader-rights = all _documents vV
(Reader-rights = 1 _only A Document-type = 1)

10

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

4.3.2 Preconditions and Postconditions of Transitions

Preconditions and postconditions are business rules. Preconditions specify under which conditions a transition may
be executed, while postconditions specify the effect of the transition on the entities. If a transition has no effect on
entities, like a simple scenario state change for example, the precondition is also the postcondition of the transition.
Preconditions and postconditions are usually expressed as boolean expressions of conditions on the values of entities.
We will use pre(tc) and post(tc) to respectively represent the pre- and postcondition of a scenario transition. Table 1
defines the pre- and postconditions for the Document Loan scenario, transition by transition.

4.3.3 Truth Table Representation of Pre- and Postconditions

For automation purposes, the precondition of a transition can also be represented by a truth table. The columns
correspond to entities involved in the condition and the lines are all the combinations of entity values satisfying the
precondition. The same is done for the postcondition of a transition.

4.3.4 Processing Associated with Transitions

Some transitions like tcs in the Document Loan scenario involve entity processing. For these transitions, the asso-
ciated processing has to be specified. Transition-associated processing will be specified by pre- and postconditions.
The precondition specifies the values of the entities before the processing and may therefore be different from the
transition precondition. In the case where no processing occurs, pre(pc) = pre(tc) and post(pc) = post(tc). The
postcondition specifies the entity values resulting from the processing.

In the Document Loan scenario, only transition tcs involves entity processing. The specification of the transition
processing is made of (pcs is for processing involved in tcj) :

pre(pes) + Document-status = available A Borrows = L A Borrowed = L A Loan-ID = L

post(pcs) ¢ Document-status = loaned A Borrows = Reader-Id A Borrowed = Document-ID A Loan-ID € code3

5 Scenario Integration

The goal of scenario integration is to produce an integrated and coherent specification of the system. In this section,
we first describe what constitutes the formal system specification. The description of the tasks required to obtain
that specification follows. We have identified three steps to obtain such a system specification : integration of
data and behavior, system states generation, and system transitions generation. The scenario integration task will
produce an integrated data model and a description of the system behavior, using a transition system.

5.1 Formal System Specification

For expressing the external specification of the system, a guarded sequential machine model is used. The system
specification SY is as follows :
SY = (E,MCZ‘,Sy,Hy,Py,Ty,Iy,Fy,R)

where

e F is the set of entities of the system,

Mec; is the set of scenario automata for all scenarios ¢y, ¢, ..., Cp,

Sy is the set of system states,

Hy is the set of external events,

Py is the set of transition-associated processing,

Ty C Sy x Hy x Py x Sy is the set of transitions,

Iy is the set of initial states,

Fy is the set of final states,

R is the set of business rules.

11

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc

DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 1: Preconditions and post conditions of the Book Loan Scenario, by transition

Transition | Starting Event Ending pre(tc) / post(tc)
state state
tci Waiting for Input Reader’s Pre Reader-ID € code2
Reader ID Reader ID LoanFile
(sc1) (her) Displayed Post Reader-ID € code2
(8014)
tea Waiting for Select Document Pre NIL
Reader ID Document Return' Post NIL
(sc11) Return Scenario
Scenario (sc12)
(he2)
tes Waiting for Select Reader Pre Reader-ID = |
Reader ID Rea.der . Registljation Post ReaderID = L
(sc11) Registration Scenario
Scenario (sc13)
(hes)
tcq Reader’s Return to Waiting for Pre NIL
LoanFile main screen Reader ID
Displayed (hea) (sc11) Post NIL
(8014)
tes Reader’s Input Reader’s Pre Document-status = available A
LoanFile Document ID | LoanFile (Reader-rights = all_documents V
Displayed (hes) Displayed Document-type = 1)
(se14) (sc14) Post Document-status = loaned A
Borrows = Reader-Id A
Borrowed = Document-ID A
Loan-ID € code3
tce Reader’s Input “No Rights” Pre Reader-rights = 1_only A
LoanFile Document ID | Message Document-type = 2 A
Displayed (hes) Displayed Document-status = available
(se14) (sc15) Post Reader-rights =1 only A
Document-type = 2 A
Document-status = available A
Loan-ID = L
ter “No rights” Return to Waiting for Pre NIL
Message main screen Reader ID
Displayed (hea) (sc11) Post NIL
(sc15)
tes “No rights” Return to Reader’s Pre NIL
Message LoanFile LoanFile
Displayed Screen Displayed Post NIL
(sc15) (hcs) (sc14)

12

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

5.1.1 Integration Baseline

The integration baseline is the set of results obtained in the preceding stages. The system specification SY will be
formally derived from that baseline which is composed of :

e entities as defined in the Data Models Integration step (Sect. 4.2);
e FSAs of the scenarios (the Mc;, Sect. 3.2);

e business rules (set R), as elicited in Section 4.3.1;

transition pre- and postconditions, as identified in Section 4.3.2;

specification of transition-associated processing as derived in Section 4.3.4.

5.1.2 Formal and Automatic Production of SY from the baseline
The remaining elements of SY are produced formally from the baseline.

e Sy is derived from the entities, transitions pre- and postconditions, and from the scenario states, all available
in the baseline. The algorithms used, described in Sections 5.2 and 5.5, are formal and can be automated.

e Hy = |J Hc;, where He; is the set of external events of scenario ¢;, as specified in the scenario FSA part of
the baseline (M¢;).

e Py =] Pc;, where Pc; is the set of processes of scenario ¢;, directly part of the baseline.

e Ty is derived from scenario transitions and scenario states, available in the baseline, from system states, entities
and their states. The algorithm, described in Section 5.6, is formal and can be completely automated.

e [y is a by-product of system state production; an initial system state is compatible with a scenario initial
state.

e [y is a by-product of system state production; a system final state is compatible with a scenario final state.

5.2 A Formal Model for Integrating Data and Behavior

In this section, scenario states and entitites will be related by a formal model based on relations. In addition, an
algorithm will be proposed for constructing entity states at the scenario level.

5.2.1 Definitions

Entity State Let e be an entity whose set of attributes is A = {ay, as, ..., an} and key attributes are ay, ..., ax
(k < n);

Definition 1 The entity domain, noted Dom(e) is defined as follows :
Dom(e) £ Dom(a;) X ... x Dom(ax) x Dom (apy1) X ... x Dom (ay).

Dom(e) can be written :
Dom(e) = snq U ... U sn,, with sn; C Dom(e).

Definition 2 A state sn of entity e is a subset of Dom(e). Moreover, all states of e constitute a partition of
Dom(e).

13

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Compatibility between entity state and scenario state Let Sn(e) = {sni,..., sn,} be the set of states of
entity e. For i € {1 : m},sn; = {vni,...,vnin, }, where vn;; € Dom(e). Let ¢ be a scenario and sc be a state of
scenario c.

Definition 3 A state sn of entity e is compatible with state sc of scenario ¢ if, for all vn; in sn, at least one of the
following conditions is satisfied :

o there exists a transition tc starting at sc, and vn; satisfies pre(tc);

o there exists a transition tc' ending at sc, and vn; satisfies post(tc').

Definition 4 A state sn of entity e is compatible with state sc of scenario c if there exists an entity €', having a
state sn' such that :

e sn' is compatible with sc, as stated in Definition 3 above;

o There exists a business rule stating that e can be in state sn only when €' is in state sn’

Definition 5 A state sn of entity e is compatible with state sc of scenario c if e satisfies the following conditions :

e it is involved in no transition starting or ending at sc;
e it is involved in no business rule as stated in Definition 4 above;

e it is invisible in scenario state sc, and all its states are compatible with c.

5.2.2 An Equivalence Relation on Entity States

We must first observe that the definition of compatibility given above can apply to a single element vn of Dom(e).
Let us consider a system defined by scenarios ci, ¢3, ..., ¢n. Scenario ¢; has scenario states sc;1, s¢ia, ..., SCim;. Let e
be an entity of the system and let Dom(e) be the domain of values of e, as stated in Definition 2.

Relation on Dom(e).
e Let Sc be any set of scenario states of the system.
o Let un;, vnj, and vng be elements of Dom(e);

Let S¢; C Sc be the set of scenario states with which vn; is compatible;

Let Sc; C Sc be the set of scenario states with which vn; is compatible;

Let Sc¢ C Sc be the set of scenario states with which vny is compatible.

We define the relation) such that
vn;Qun; iff Se; = Sc;

It is easy to show that @) is an equivalence relation :
Q is reflexive : vn;Qun; means that Sc; = Se¢;;
Q is symetric : if vn;Qun;, then Sc; = Sc;; therefore, Sc; = Sc;, which implies vn;Qun;;

Q is transitive : vn;Qun; implies S¢; = Scj; vn;Quny implies Sc; = Scy; set equality (=) is transitive, therefore
Sc; = Scy, hence vn;Quny.

Being an equivalence relation on Dom(e), @) induces a partition of Dom(e). The equivalence classes of the
partition define the states sn; of entity e.

14

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Compatible set Let Sn(e) = {sn1, ..., sn,} be the set of states of e as defined above. For each sn;, there is an
associated set of scenario states Comp(sn;) with which all values in sn; are compatible. Comp(sn;) is defined as
the compatible set of sn;.

Empty Compatible Set There is no constraint on the content of Comp(sn;). It could be empty. One equivalence
class can therefore correspond to those values of Dom(e) which are compatible with no scenario state of Sc.

5.2.3 Composition of Relations on Partial Sets of Scenarios

Let Secq, Sca, be subsets of a set Sc of scenario states. Let e be some entity and Dom(e) the entity domain. The
relation @) defined above induces on Dom(e) one partition with respect to Se¢; and one partition with respect to
SC2 :

o Il(e) = {sn1,...,sny} is the partition induced by @ with respect to Sc¢; and Comp(sny), ..., Comp(sn,,) are
the corresponding compatible sets;

o IT'(e) = {sn},...,sn.,} is the partition induced by () with respect to Sco and Comp(sn}), ..., Comp(sn!,) are
the corresponding compatible sets.

Proposition 1 The equivalence classes induced by QQ with respect to Sci U Sca on Dom(e) are sn; N sn},Vi, 7.
Moreover, the corresponding compatible sets are Comp(sn; N sn’;) = Comp(sn;) U Comp(snj).

Proof
1. Compatibility of elements of sn; N sn; :

o sn; = {vny,vne, ..., vn, Hong € Dom(e));

e snj = {vn},vny,...,on;, }H(vn; € Dom(e));

It is obvious that elements common to sn; and snj (sn; N sn) are compatible with Comp(sn;) and with

Comp(sn};). Moreover, because of the definition of), Comp(sn;) contains the only elements of Sc; with

which sn; N sn’; are compatible, and Comp(sn}) contains the only elements of Scz with which sn; N sn); are

compatible. Therefore, Comp(sn;) U Comp(sn’;) contains the only elements of Sc with which sn; N snj are
compatible. The partition of Sc including sn; N sn}; may contain more elements of Dom(e) but its compatible

set is exactly Comp(sn;) U Comp(sn}).

L

2. Compatible set of the partition with respect to Sc; U Ses :
Let us consider the partition of Dom/(e) based on Comp(sn;)UComp(snj). Let sn = {vni,vn, ...,vnm},vng €
Dom(e), be an element of the partition and let Comp(sn) be its compatible set.

e The element vny belongs to one and only one element of the partition with respect to Sc;. Let sn; be
that element, with Comp(sn;) the corresponding compatible set.

e The element vny belongs to one and only one element of the partition with respect to Sca. Let sn;- be
that element, with Comp(sn};) the corresponding compatible set.

Therefore, vny, belongs to sn; Nsn’; and is compatible with Comp(sn;) U Comp(sn’;). Because of the definition
of relation @, it is easy to show that Comp(sn;) U Comp(sn);) are the only elements of Sc; U Sez with which
vny, is compatible. Therefore Comp(sn;) UComp(sn;) = Comp(sn). Because this is true for any vny, € sn, all
elements of sn are common to sn; and sn;

5.3 Construction of Entity States at the Scenario Level
Constructing entity states at the scenario level involves three steps :
1. defining the pre- and postconditions at each scenario state;

2. for each entity, defining the values compatible with each scenario state;

3. for each entity, calculating the entity states.

15

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

5.3.1 Preconditions and postconditions at a Scenario State

The Condition at a scenario state is constructed using the following rules. Let us consider a transition tc =
(sc, he, sc').

Rule 1 : the precondition of transition tc becomes a precondition of scenario state sc;
Rule 2 : the postcondition of transition tc becomes a postcondition of scenario state sc';
Rule 3 : all preconditions, postconditions of a scenario state are considered as combined by the “V” operator;

Rule 4 : if transition tc has NIL as a precondition, the condition of scenario state sc is considered to be the implicit
precondition of transition tc;

Rule 5 : if transition tc has NIL as postcondition, the precondition, explicit or implicit, of transition tc, becomes
the postcondition of tc;

Rule 6 : For any entry state of the scenario, include as conditions the conditions required by the business task.

Because of Rule 5, iterations may be required in order to find the complete set of conditions at a given state.
The order in which to process the transitions is defined as follows :

e process first all transitions with explicit preconditions, starting at an entry state of the scenario, and following
a path to a final state;

e consider then the transitions with no explicit preconditions and postconditions, and process them in an order
such as to minimize the number of iterations.

Such an approach, however is difficult to implement. A simpler approach is to calculates the transitive closure
for all the scenario states.

Table 2 shows for each scenario state of the Document Loan Scenario the contribution of the transitions (see
Table 1 for the meaning of abbreviated names).

Transitions tcy, tcy, te; and teg have no pre- nor postconditions. In order to avoid iterations, they will be
processed in the order tcg, tcy, tey, teca. For teg, all the conditions at scis will be added to the conditions of scyy.-
Then, for tcy, the conditions at scis will be added to the conditions at scy1. Then, for tey, the conditions at sci4 (as
incremented) will be added to the conditions at sci1. Finally, for tcy, the conditions at sci; (as incremented), will
be added to the conditions at sci2. The final result, i.e., the conditions at each scenario state are shown in Table 3.

5.3.2 Entity values compatible with a scenario state

In order to determine the entity state / scenario state compatibility, the following steps are performed for each
entity :

1. Find the contributing attributes of the entity. An attribute is contributing to the entity states if any of the
following holds :

e it appears in a pre- or postcondition of some state of the scenario;

e it is constrained by a business rule in which the left part contains an attribute appearing in a pre- or
postcondition of some state.

2. Construct the truth table of the contributing attributes.
3. Eliminate the values incompatible with business rules.
4. Find values compatible with the scenario state :

e a value compatible with some pre- or postcondition of the scenario state (corresponds to Definition 3 in
Section 5.2);

e a value constrained by a business rule in which the left part contains a value appearing in a pre- or
postcondition of the scenario state (corresponds to Definition 4 in Section 5.2);

16

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc

DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 2: Pre- and postconditions at each scenario state, by transition

Scenario state Transition | Precondition Postcondition
sc11 Scenario
precondition : Document-status = available A
Loan-ID = L
tc; : | Reader-ID € code2 Not applicable
tco @ | NIL Not applicable
tcy : | Not applicable NIL
tcr = | Not applicable NIL
tcs : | Reader-ID = L Not applicable
SC12 tco ;| Not applicable NIL
sc13 tcs @ | Not applicable Reader-ID = L
SC14 tes : | Document-status = available A Document-status = loaned A
(Reader-rights = all _documents V Borrows = Reader-ID A
Document-type =1) Borrowed = Document-ID A
LoanID € code3
tcy @ | NIL Not applicable
tce : | Reader-rights =1 only A Not applicable
Document-type = 2 A
Document-status = available
tc; : | Not applicable Reader-ID € code2
tes : | Not applicable NIL
sc15 ter : | NIL Not applicable
tcg : | NIL Not applicable
tcg : | Not applicable Document-status=available A

Reader-rights = 1 _only A
Document-type = 2 A Loan-ID = L

17

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 3: Conditions at each scenario state

Scenario state Conditions

Waiting for Reader-ID € code2 V Reader-ID = 1 Vv

Reader ID (Document-status = available A Loan-ID = 1) Vv

(sc11) (Document-status = available A (Reader-rights = all_documents V

Document-type = 1)) V

(Document-status = available A Reader-rights = 1 _only A Document-type = 2 A
LoanID = 1) Vv

(Document-status = loaned A Borrows = Reader-ID A Loan-ID € code3)

Document Reader-ID € code2 V Reader-ID = 1L V
Return Scenario | (Document-status = available A Loan-ID = 1) V
(sc12) (Document-status = available A (Reader-rights = all _documents V

Document-type = 1)) V
(Document-status = available A Reader-rights = 1 _only A Document-type = 2 A

LoanID = 1) vV
(Document-status = loaned A Borrows = Reader-ID A Loan-ID € code3)
Reader Reader-ID = L
Registration
Scenario
(sc13)
Reader’s (Document-status = available A (Reader-rights = all _documents Vv
LoanFile Document-type = 1) V
Displayed (Document-status = loaned A Borrows = Reader-ID A Borrowed =
(sci14) Document=ID A Loan-ID € code3) V Reader-ID € code2 V
(Document-status = available A Reader-rights = 1 _only A Document-type = 2 A
Loan-ID = 1)
“No rights” Document-status = available A Reader-rights = 1 _only A Document-type = 1 A
Message Loan-ID = L
Displayed
(sc15)

18

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

e all values of the entity if it does not appears in cases above : the entity is invisible in that scenario state
(corresponds to Definition 5 in Section 5.2).

Entity states are constructed by applying the Entity State Generation Algorithm.

At a scenario state, the basic partition of an entity involves two sets : values compatible with the scenario state,
and values not compatible with the state (this set may be empty). The basic partitions can therefore be constructed
directly when finding the entity values compatible with a scenario state.

The Entity State Generation Algorithm applies this result in order to construct the entity states, based on the
business rules identified.

Algorithm 1 FEntity State Generation Algorithm.

Let C ={c1,c2,...,cn} be the set of all scenarios of the system;

Let Sc; = {sci1, ..., scim } be the set of states of scenario c¢;;

Let Sn(sc) be the set of entity states based on the compatibility of scenario state sc;
Let Sntemp be a temporary set of entity states;

Let Sn be the final set of all entity states;

Let sn, sn’ be entity states;

Let Comp(sn) be the set of scenario states compatible with entity state sn.

A- We first generate basic partitions for each scenario state of each scenario.
For each scij,i € {1,...,n},j € {4, ...,m}

We create a partition Sn(sci;) of Dom(e), based on the compatibility of sc;;. Sn(scij) will be made of two elements,
sn containing those elements of Dom(e) compatible with sc;; and sn' containing those elements of Dom(e) which
are not compatible with sc;;.

sn < subset of Dom(e) compatible with sc;;
sn' < subset of Dom(e) not compatible with sc;;
If sn’ #0
Sn(scij) « {sn,sn'}
Comp(sn) « {sci;}
Comp(sn') + 0
Else
Sn(scij) < {sn}
Comp(sn) < {sci;}
End-If
End-For

B- Starting with one scenario state, the partitions are composed as seen above, by adding each time one scenario state.
The result is :

o all states of the entity;

e for each entity state, its compatible set.

Sn + {Dom(e)}
Sntemp «~0
For each scij,i € {1,...,n},j € {4, ...,m}
For each sn € Sn
For each sn’ € Sn(sc;;)
If snNsn' #0
STitemp — Sntemp U {sn N sn'}
Comp(snNsn') + Comp(sn) U Comp(sn’)
End-If
End-For
End-For
Sn < Sniemp
Sntemp ~0
End-For

19

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 4: Truth Table of the Document, Entity

Document-ID | Document-status | Document-type | Abbreviated name
1 1 1L vny1

1 1 1 invalid (r1)
1 1 2 invalid (r1)
1 available 1 invalid (r1)
1 available 1 invalid (rq)
1 available 2 invalid (rq)
1 loaned 1 invalid (r1)
1 loaned 1 invalid (r1)
1 loaned 2 invalid (r1)
€ codel L 1 invalid (r2)
€ codel L 1 invalid (r2)
€ codel L 2 invalid (r2)
€ codel available 1 invalid (r2)
€ codel available 1 VN1

€ codel available 2 VN3

€ codel loaned 1 invalid (r2)
€ codel loaned 1 VN4

€ codel loaned 2 VN5

In the following subsections, we illustrates this algorithm for the Document, Reader, LoanFile entities, for the
Document Loan Scenario.

5.3.3 Entity States of the Document Entity
Contributing attributes
e Mentioned in some scenario state condition : Document-status, Document-type.

e Involved in a relevant business rule : Document-ID, Document-status, Document-type.
Truth table See Table 4.

Elimination of values incompatible with business rules Most of the values have been eliminated, due to the
existential rules of the entity. The remaining values have been assigned value identifiers in Table 4.

Values compatible with scenario states and basic partitions See Table 5.

States of the Document entity See Table 6.
The partitions of the Document entity are :

e sny; = {vni2} (Document-status = available and Document-type = 1), compatible with scenario states sci1
to S8C14,

e snip = {vnyz} (Document-status = available and Document-type = 2), compatible with all states of the
scenario,

o sny3 = {vnie,vnis} (Document-status = loaned), compatible with scenario states sci1, sci2, and sciq,

o sny4 = {vni1} (Document Entity undefined), compatible with no scenario state.

20

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 5: Basic partitions of the Document entity

Scenario state Compatible values and Partition Compatible sets
Waiting for UN1z, UN13, UN14, VN5
Reader ID Sn(sci1) = Comp({vniz, vz, vma, vms}) = {sei}
(sc11) {{vn12, vmz, vnia, vnis}, foni 1} Comp({vmi}) =
Document UN12, UN13, UN14, UN15 c _
Return Scenario Sn(sci2) = Comp({”"12’v723é vnig,vnis}) = {sciz}
(sc12) {{vni2,vn13, vn14, v015}, {vnii }} omp({vnu}) =
Reader R
Regist?ation S'I‘L(S,Cls) — Comp({vnia, vz, vnia, vnis}) = {sciz}
scenario {ons, vnis}, fonus, vnse, vnss Comp({vni1,vnia, vnis}) = 0
frea
eader’s
. Uni12, VN13, UN14, VN15
LganFlle Sn(scs) = Comp({vni2,vn13,vn14,vn15}) = {scia}
Displayed {{vniz,vn13,vn14, 0015}, {vni1 }} Comp({vni1}) =0
‘(KSCI4)' b))
No rights Vs
Message Sn(scis) = Comp({vnis}) = {sc15}
Displayed {{vni3}, {vni1,vn12,vn14, v015}} Comp({vni1, vz, v, vas}) = 0
(sc15)
Table 6: Construction of the states of the Document entity
(4,7) | Partition Compatible sets
Comp(sni) = {sc
(1,1) Sn = {{Un12, UN13, UN14, Un15}, {vnn}} COmﬁEsn;; _ { 11}
Comp(sni) = {scll sci2}
1,2 =)
(1,2) | Sn = {{vniz,vnis,vn14,v1s5}, {oni1}} Comp(sns) = 0
Comp(sni) = {sc11, sc12, sci3}
(1,3) | Sn = {{vniz,vnis}, {vnis,vnis}, {vni1}} Comp(snz) = {sci1, sc12}
Comp(snz) =0
Comp(sni) = {sc11, sc12, sc13, Sc14}
(1,4) | Sn = {{vni2,vnis}, {vnia,vnis}, {vni1}} Comp(snz) = {sc11, sc12, sc1a}
Comp(snz) =0
Comp(sni) = {sc11, sc12, sc13, sc14}
_ Comp(sn2) = {sc11, sc12, sc13, SC14, SC15 }
(175) Sn = {{Unm}: {1)71,13}, {1)7114,1)77,15}, {Unll}} C’omp(sng) — { se11, sciz, 8014}
Comp(sna) =0

21

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 7: Truth Table of the Reader entity

Reader-ID | Reader-rights Reader-data | Abbreviated name

1 1 1 vna1

1 all _documents | L invalid (r3)

1 all _documents | € strings invalid (r3)

1 1 € strings invalid (r3)

1 1_only 1 invalid (r3)

1 1_only € strings invalid (r3)

€ code?2 1 1 invalid (r4)

€ code?2 1 € strings invalid (r4)

€ code2 all _documents | L invalid (r4)

€ code2 all _documents | € strings VToa

€ code2 1 _only 1 invalid (r4)

€ code2 1 _only € strings UNa3

Table 8: Basic partitions of the Reader Entity

Scenario state Compatible values and Partition Compatible sets
Waiting for VMot UM, Vg
2e:il)er D Sn(serr) = {{ona1, vnas, vnss)} Comp({vna1, vnag,vnaes}) = {sci1}
gotcumeél ¢ . Un21, UN22, UN23 C
(Se011211)rn cenario Sn(sciz) = {{vnar, vngs, vnas}} omp({vna1, vnag,vnaes}) = {scia}
Reader
Registration vnay Comp({vna1}) = {sci13}
scenario Sn(sciz) = {{vna1}, {vnae,vnas}t} Comp({vnaz,vnes}) =0
(sc13)
Reader’s
LoanFile UN22, VN23 Comp({vnas, vnag} = {sc14}
Displayed Sn(scra) = {{vnaa, vnas}, {vnai }} Comp({vna1} =0
(sc14)
“No rights”
Message Una3 Comp({vnasz} = {sc15}
Displayed Sn(scis) = {{vnas}, {vna,vnas}} Comp({vna1,vna} =0
(sc15)

5.3.4 Entity States of the Reader Entity

Contributing attributes

e Mentioned in some scenario state condition : Reader-ID, Reader-rights.

e Involved in a relevant business rule : Reader-data.
Truth table See Table 7.

Elimination of values incompatible with business rules Most of the values have been eliminated, due to the
existential rules of the entity. The remaining values have been assigned value identifiers in Table 7.

Values compatible with scenario states and basic partitions See Table 8.

States of the Reader entity See Table 9.
The partitions of the Reader entity are :

22

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 9: Construction of the states of the Reader entity

(i,7) | Partition Compatible sets
(1,1) | Sn = {{vna1,vn92,vno3}} Comp(sny) = {sc11}
(1,2) | Sn = {{vna1,vn92,vn03}} Comp(sny1) = {sc11, sc12}
_ Comp(sni1) = {sc11, sci2, sciz}
(1,3) | Sn = {{vna1}, {vnaz, vnas}} Comp(sns) = {sc11. sc15}
_ Comp(sni1) = {sc11, sci2, sciz}
(1,4) | Sn = {{vna1}, {vnaz,vnaz}} Comp(sna) = {sc11, sc12, 5¢14}
Comp(sny) = {sc11, sci12, sc13}
(1,5) | Sn = {{vna1}, {vnaz},{vnas}} | Comp(sna) = {sc11, sc12,5¢14}
Comp(sng) = {sc11, s¢12, $C14, 5C15}

Table 10: Truth Table of the LoanFile entity

Loan-ID | Borrows | Borrowed | Abbreviated name
1L 1L 1 unsi

1 1 € codel invalid (Rule 1)

1 € code2 | L invalid (Rule 1)

1 € code2 | € codel invalid (Rule 1)

€ code3 | L L invalid (Rule 2)

€ code3 | L € codel invalid (Rule 2)

€ code3 | € code2 | L invalid (Rule 2)

€ coded | € code2 | € codel VN3

sng1 = {vno1} (Reader not registered), compatible with scenario states sci1, sci2, sci3,

sngz = {vnaa} (Reader-ID € code2, Reader-rights = all _documents, Reader-data € strings), compatible with
scenario states sci1, Sci2, and sciq,

snag = {vn23} (Reader-ID € code2, Reader — rights = 1_only, Reader-data € strings), compatible with
scenario states sci1, Sc12, Sc14, and scis.

5.3.5 Entity States of the LoanFile Entity

Contributing attributes

e Mentioned in some scenario state condition : Loan-ID, Borrows, Borrowed.

e Involved in a relevant business rule : none.

Truth table See Table 10.

Elimination of values incompatible with business rules Most of the values have been eliminated, due to the
existential rules of the entity. The remaining values have been assigned value identifiers in Table 10.

Values compatible with scenario states and basic partitions See Table 11.

States of the LoanFile entity See Table 12
The states of the LoanFile entity are :

e sng; = {vnz1} (LoanFile does not exist), compatible with all scenario states,

e sngy = {vngz} (LoanFile fully defined), compatible with scenario states sci1, scia, sci4.

23

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 11: Basic partitions of the LoanFIle Entity

Scenario state

Compatible values and Partition

Compatible sets

Waiting for

Ungy, UNg2
2ecad)er 1D Sn(sen) = {{vna1, vnas)} Comp({vnz1,vnz2}) = {sci1}
11
Document
. Ungy, Ung2
zectul)rn Scenario Sn(seis) = {{ona1, vngs}} Comp({vnz1,vngz}) = {sci2}
12
Reader
Registration CULEST Comp({vnz1}) = {scis}
scenario Sn(sciz) = {{vna1}, {vns2}} Comp({vnz2}) =0
(sc13)
Reader’s
LoanFile Ungy, vN32
Displayed Sn(sc1a) = {{vna1,vnsa}} Comp({vnz1, vns2}) = {sc1a}
(8014)
“No rights”
Message unszy Comp({vnz1}) = {sci5}
Displayed Sn(scis) = {{vna1}, {vns2}} Comp({vnz2}) =0
(sc15)

Table 12: Construction of the states of the LoanFile entity

(z,7) | Partition Compatible sets
1 Sn = {{vnz1,vnzs}} Comp({vng1,vngz2}) = {sc11,s¢12}
Comp({vns1}) = {sc11, sc12, sc13}
2 Sn = {{vn on ’ ’
{{ 31}7{ 32}} gompg VN3 »3 = 3011,5012} }
omp(1vn31y) = 15C11, 8C12, €13, SC14
3 Sn = {{vn vN3s
{{ 31}7{ 32}} gompg Un39 g S 3011,80127«9014} }
omp{1vnzyy) = 18C11, 8€12, €13, $C14, SC15
4 Sn = {{vn on
{{vnai}, {vna2}} Comp({vnga}) = {sc11,5¢12,5¢14}

24

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

5.4 State Truth Table of Transition Pre- and Postconditions

The following is introduced to prove that scenario integration can be completely automated. Let Tpre(tc) be the
values truth table of transition tc (see Sect. 4.3.3), and let [be a line of that table. Let eq,es, ..., €5, be the entities
involved in Tpre(tc). Let Sn(e1), Sn(ez),...Sn(e,), be respectively the set of states of entities e, es, ..., €n.

Definition 6 Entity states combination Sn(e1) X Sn(ez) x ... x Sn(ey,) satisfies pre(tc) if | € Sn(e1) x Sn(ez) x
. X Sn(ey).

Application The state truth table of pre(tc) is obtained by replacing in Tpre(tc) every line by the entity state
combination which contains the line. In the resulting table, each line satisfies pre(tc). The same is done for post(tc).

5.5 Generating System States

The integrated data model has identified all the entities. Furthermore, The entity states were constructed based on
the information available from all the scenarios. The next step is to generate the system states based on the entity
states and the scenario states.

5.5.1 Obtaining System States

Potential System State A system state is characterized by the entities composing the system. Therefore, there
must be a link between system state and entity state. Potentially, the system may be in any state the entities can
be. A potential system state, noted w, is defined as one tuple in the carthesian product of all entity states. Given
E ={ey,...,en}, a set of system entities, and Sn(e), the set of integrated entity states for entity e, we have the set

of potential system states W :
W £ Sn(er) x ... x Sn(ey).

Purified Potential System State Some of the potential system states are invalid, based on the semantics of the
different, scenarios, as identified in Section 4.3. Therefore, potential states must be “purified” to preserve only the
states which agree with entity states constraints (i.e., business rules).

A purified potential system state, noted wp, is a potential system state which agrees with all the entity states
constraints identified in all the scenarios. Given R = {ry, ..., }, a set of business rules, we have the set of purified
potential system states Wp :

Wp £ {w=(sn1,..,80n) EW [1 Ao AT}

System State

Definition 7 A system state sy is a subset of Wp. Moreover, all system states constitute a partition of Wp.

Compatibility between system state and scenario state

Definition 8 A system state sy is compatible with state sc of scenario c if, for all wp; in sy, the following conditions
is satisfied :
sc € Comp(wp)

where .
Comp(wp) £ ﬂ Comp(sn;)

i=1

5.5.2 An Equivalence Relation on System States

We must first observe that the definition of compatibility given above can apply to a single element wp of sy. Let
us consider a system defined by scenarios ¢, ¢a, ..., ¢y Scenario ¢; has scenario states sc;i1, 8¢z, ..., $Cim; - Let Wp be
the set of purified potential system states.

25

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Relation on Wp.
e Let Sc be any set of scenario states of the system.
o Let wp;, wp;, and wpy, be elements of Wp;
e Let Sc; C Sc be the set of scenario states with which wp; is compatible;
o Let Sc; C Sc be the set of scenario states with which wp; is compatible;
e Let S¢i C Sc be the set of scenario states with which wpy is compatible.

We define the relation Q' such that
wp;Q'wp; iff S¢; = Se;

It is easy to show that Q' is an equivalence relation :
Q' is reflexive : wp;Q'wp; means that Sc; = Sc;;
Q' is symetric : if wp;Q'wp;, then Se; = Sc;; therefore, Sc; = Se¢;, which implies wp; Q' wp;;

Q' is transitive : wp;Q'wp; implies S¢; = Sc;; wp; Q'wpy, implies Sc; = Scy; set equality (=) is transitive, therefore
Sc; = Sey,, hence wp; Q' wpy.

Being an equivalence relation on Wp, Q' induces a partition of Wp. The equivalence classes of the partition
define the system states Sy.

Compatible set Let Sy = {sy1, ..., Syn} be the set of system states as defined above. For each sy;, there is an
associated set of scenario states Comp(sy;) with which all values in sy; are compatible. Comp(sy;) is defined as the
compatible set of sy;.

Empty Compatible Set There is no constraint on the content of Comp(sy;). It could be empty. One equivalence
class can therefore correspond to those values of Wp which are compatible with no scenario state of Sc. These states
represent invalid states in the context of current set scenario states Sc.

5.5.3 Integration Strategy

Although the approach described above yields a minimum number of system states, calculating these states may
require O(avg!®l. || R||), where
[12]

B Sn(e)
W= ; [

is the average number of entity states per entity, || E|| is the number of states, and || R|| is the number of business
rules.

Obviously, we want to reduce this number of steps as much as possible. The strategy that we have developed uses
the approach used in relational database systems (RDBS) to optimize queries. Database queries usually consist of
multiple carthesian products (or joins) with an equality constraint on certain values of the attributes. Optimization
strategies will try to reduce, if not eliminate, the number of carthesian products required to obtain the query
result [4].

This is accomplished by joining two relations (or partial results) at a time, and by using index information and
query constraints to determine the best order to perform the different join operations. The “query plan” usually
consists of a tree where the leaves are the relations to join to obtain the final query result, and the nodes are join
operations to perform.

5.5.4 Integration Algorithms

Two algorithms are defined to generate system states (Sy) from entity states (Sn(e)). The first algorithm, the
Carthesian Product Sorting Algorithm, is used to produce the carthesian product sequence. The second algorithm,
the System State Generation Algorithm, produces the system states based on that carthesian product sequence, on
the entity states, and on the business rules. This section presents these algorithms.

26

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Carthesian Product Sorting Algorithm The Carthesian Product Sorting Algorithm constructs the carthesian
product evaluation tree. As stated earlier, each leaf is the set of states for one entity. Each node is a carthesian
product between two subtrees, constrained by some business rules. The tree structure is implicit, however, because
we only determine the sequence in which each product in the tree should be performed.

The first product is identified by looking at the the number of potential system states produced when merging
(i.e., applying a carthesian product) the states of two entities. The pair that yields the smallest number is merged
first. The subsequent products are determined in the same manner. However, we do not consider the entities already
merged, but rather the result from that merge operation. The algorithm performs in O(|| E||*).

Algorithm 2 Carthesian Product Sorting Algorithm.

Let E = {ey, ..., en} be the set of entities;

Let Sn(e) be the set of states of entity e;

Let avg(e, j) be the average number of occurences of a state of entity e after the j** carthesian product;
Let R = {ri1,...,7m} be the set of business rules;

Let II = {my,...,m} be a partition on E;

Let IT' be a partition on E;

Let rule({e,...,en}) be the number of rules involving entities e, ..., e,; this function is precalculated,;
Let o({e, ..., ex}) be the number of operations needed to perform the carthesian product of entities e, ..., ex;
Let Mazx be the largest possible number of operations; Max 2| Sn(e1)]| -...- || Sn(en) ||

Let Min be the smallest number of operations to perform during an iteration;

Let Ordi (i) be the first set of entities being merged at the i*" carthesian product;

Let Orda (i) be the second set of entities being merged at the i*" carthesian product.

A- We initialize Maz, II, avg, and o.

Mazxz + 1

M« 0

For each i € {1,...,n}
T {el}
II+<1IIu {7'{'7,}
avg(e;, 0) + 1
o(mi) || Sn(ei) ||
Maz < Maz - o(m;)

End-For

We iterate until we have determined the order of all the carthesian products. At each iteration, we determine the best
product to perform. The variable Ord preserves that information for the System State Generation Algorithm.

11

While ||II]|#1

B- We calculate the cost (o) for each partition to determine the best initial merge. We also determine the carthesian
product that will yield the smallest number of operations. The general equation for o is :
avg(e,i — 1)
o(mj Umy) = o(m;) - o(me) — —— 5 rules(m; Umy)

ecm;Umy

Min <+ Max
For each j € {1,...,||II|| —1}
Avgr + 0
For each e € 7;
Avgr < Avgr + avg(e,i — 1)/2
End-For

For each k € {j,..., || II||}
Avgs + Avgy
For each e € 7,
Avgs + Avgs + avg(e,i — 1)/2
End-For

27

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

o(mj Umg) < o(m;) - o(mj) — Avga - rules(m; U mg)

If Min > o(mj U mg)
Min + o(m; U mg)
OT‘dl (l) — T
Ordy (i) < m
End-If
End-For
End-For

C- We calculate the average number of occurences of an entity after this iteration (avg). When we merge 7(=
Ordy (7)) and 7' (= Ordy(3)), for e € 7 Un’, we have

L _o(mrur’)
9D = @]
For each e € Ordi (i) U Orda(t)
. o(Ordq1(1)UO7rds (i
avg(e, i) « SO

End-For

For each e € E\ (Ord; (i) U Orda (7))
avg(e,i) + avg(e,i — 1)

End-For

D- We merge the partitions corresponding to the previous carthesian product.

k<1
Ir'«+1
For each j € {1,..., ||II||}
If T = Ord; (1)
7}, < Ordy (i) U Orda (i)
Il « II' U {m},}
k< k+1
Else-If 7; # Orda(7)
7(';C — Ty
II' + II' U {m},}
k<—k+1
End-If
End-For
IMI«1Ir
ti+1
End-While
Ordi (l) «— F

Applying the Carthesian Product Sorting Algorithm Table 13 illustrates the application of the Carthesian
Product Sorting Algorithm to the Simple Library Case, limiting this study to the Document Loan Scenario. Based
on this result, we first integrate entities Document and LoanFile. Then, we integrate this partial result with the
Reader entity.

System States Generation Algorithm The System States Generation Algorithm generates the purified poten-
tial system states and removes invalid states as early as possible. It incrementally creates these states by following
the carthesian product order determined by the Carthesian Product Sorting Algorithm. At each increment, we merge
two previously obtained partial products.

Algorithm 3 System States Generation Algorithm.

Let E = {e1, ..., en} be the set of entities;
Let Sn(e) be the set of states of entity e;
Let R = {r1,...,rm} be the set of business rules;

28

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 13: Determining the Carthesian Product Order
Iteration Variable Value

i=0 o({e1})

S
—~
~
3}
w
(-
SN—
o N W

II | {{e1},{e2},{es}}
i=1 o({e1,e2}) | 12

o({e1,e3}) | 5

o({ez,e3}) | 6

avg(er,1) | 1.25
avg(e2,1) | 04
avg(es,1) | 1

IT | {{e1,es},{e2}}

Ole (1) {61}
O’I‘dz(].) {63}

i=2 o({e1,e2,e3}) | 3
avg(e1,2) | 0.75

avg(es,2) | 1

avg(es,2) | 0.67
IT | {{e1,e2,e3}}
Ole (1) {61,63}
) | {e2}

Let rule({e1,...,en}) be the number of rules involving entities ey, ..., €,; this function is precalculated,;

Let Ordi (i) be the first set of entities being merged at the i*" carthesian product resulting from the Carthesian Product
Sorting Algorithm;

Let Orda(i) be the second set of entities being merged at the i*" carthesian product resulting from the Carthesian

Product Sorting Algorithm;
Let W({e1,...,en}) be the purified potential system states in the carthesian product of entities e1, ..., en;

Let Sc be the set of scenario states;

Let Comp(sn) be the set of scenario states compatible with entity state sn;

Let Comp(w) be the set of scenario states compatible with purified potential system state w;

Let Sy = {syu, ..., syi} be the set of system states; each system state is a set of purified potential system states;
Let Comp(sy) be the set of scenario states compatible with system state sy.

A- We initialize Next', CompTuple, W, next, and previous.

For each e € F
W ({e}) « Sn(e)
End-For

B- We perform the carthesian product.

141
While Ordi(i) # E
For each w € Ord (i)
For each w' € Orda (i)
OK < True
For each r € rules(Ordi (i) U Ordz (7))
OK + OK Ar(w,w")
If DK
Exit For each loop
End-If
End-For

29

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

If OK A (Comp(w) N Comp(w') # 0)
W (Ordi(i) U Orda(4))) < W(Ordi(i) U Ord2(7))) Uw X o'
Comp(w X w') < Comp(w) N Comp(w'")
End-If
End-For
End-For
14141
End-While
C- We create system states by partitionning the purified potential system states on the set of compatible scenario states.

Sy« 0
For each w € W(E)
found < False
For each sy € Sy
If Comp(w) = Comp(sy)
sy + sy U{w}
found < True
Exit For each loop
End-If
End-For
If = found
sy + {w}
Comp(sy) < Comp(w)
Sy «+ Sy U {sy}
End-If
End-For

Applying the System States Production Algorithm Table(14) shows the partial results of the carthesian
products to obtain the purified potential system states. By partitioning Wp, we obtain the following system states :

e sy; : LoanFile does not exist, Reader does not exist, Document is available;

e sys : Reader exists and either LoanFile does not exist and Document is available and of type 1, or Document
is loaned;

e sys : Reader exists, LoanFile does not exist and Document is available and of type 2.

5.6 Generating External System Transitions
5.6.1 Definition and Properties

The specification considers only external transitions, corresponding to scenario transitions. A system transition is
a tuple (sy, hy,py, sy’), such that there exists a scenario transition tc = (sc;j, he, sci) in scenario ¢;, and sy is a
system state compatible with scenario state sc;j, sy’ is a system state compatible with scenario state sc;x, hy = he
is the event of scenario ¢;, triggering scenario transition tc, py is the processing involved in scenario transition tc,
specified by pre(tc) and post(tc).

Properties of System Transitions

Property 1 Compatibility of system state and precondition of scenario transition. Let sy be a system state. Let
Tpre(tc) be the state truth table of scenario transition tc’s precondition. If sy N Tpre(tc) # 0, a system transition
ty, corresponding to tc, may start at system state sy.

Property 2 Compatibility of system state and postcondition of scenario transition. Let sy’ be a system state. Let

Tpost(tc) be the state truth table of scenario transition tc’s postcondition. If sy’ NTpost(tc) # 0, a system transition
ty, corresponding to tc, may end at system state sy'.

30

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 14: Obtaining System States

Potential states Comp(w) Comments
W({el}) ={STL11 {5011,801278013,SC14}
SN2 {sc11, sc12, 513, 8C14, SC15}
sn13 {sc11, sc12, 514}
sn14 0 Removed

}
W({e2}) ={sna
EUDP)
SNo3

}
W({es}) ={sns1
SN39

}

{8611, 8C12, 8013}
{8011, 8C12, 8014}
{8011, 8C12, SC14, 5015}

{sc11, sc12, s¢13, SC14, SC15 }
{sc11, sc12, s¢14}

W ({e1,e3}) ={(sni1,sn31) {sc11,5c12, sC13,5C14 }
(sn11, 8n32) Invalid (rg)
(sz, sn31) {8011, 8C12, SC13, SC14, 8015}
(sn12, 8m32) Invalid (rs)
(S?’ng, STL31) {5011, 8C12, 8014}
(sm13, 8N32) {sc11,5c12,8¢14}

}
W({e1,ea2,e3}) ={(sn11, $n21, 5131

()
(sn11, sM2g, sn31)
(sn11, snag, sn31)
(sn12, sn21, sn31)
(sn12, snaa, sn31)
(sn12, 8123, sn31)
(sn13, 8121, sn31)
(sn13, sNaa, sn31)
(sn13, snag, sn31)
(sn13, sn21, sn32)
(sn13, sM29, $132)
(sn13, sno3, sn32)

{80117 8C12, 3013}
{80117 8C12, 3014}
{8011, S8C12, 8014}
{8011, S8C12, 8013}
{sc11,5¢12,8¢14, 8¢15}
{5011, 8C12,8C14, 8015}

{8611, S8C12, 8014}
{8611, S8C12, 8014}

{8011, 8C12, 8014}
{8011, 8C12, 8014}

Invalid (r7)

Invalid (r7)

31

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Serialisation (or non-concurrency) assumption. it will be assumed that at any time, at most one transition
is executed by the system. At the implementation level, the assumption is reasonable, because it does not preclude
concurrent executions of scenario transitions at the system level : if two scenario transitions are concurrently
executed, the assumption results in an interleave of the executions of transitions belonging to different scenarios.
The FSA model precludes already concurrent executions of transitions of the same scenario.

Definition 9 Let E = {ey,...,en} be the set of entities and sy = {w1,...,wn} C Sn(e1) X ... x Sn(e,) be a system
state. The projection of a system state sy on entities €, ...,e},, proj(sy,{e,...,e.,}), is the set {w},...,w],} where

wj is constructed from w; by only keeping values for entities e, ...,e,,.

Property 3 Coherence between starting and ending state of a system transition. If the serialisation assumption
holds when system transition ty corresponding to scenario transition tc is executed, only those entities involved in
the transition may change. As a consequence, the entities not involved in post(tc) must be in the same states in sy
and in sy'. This can be stated formally as follows.

Let €1, ea, ..., e, be the entities not involved in post(tc). Tuple (sy, hy, py,sy’) will be a system transition only if
proj(sy, {617 €2, .- en}) = pT‘Oj(Syl, {ela €2, en})

Given a scenario transition and a pair of system states, all three properties can be verified automatically, because
the required information is available either in the baseline (pre- and postconditions) or as result of the system state
generation step (entity states corresponding to a system state).

5.6.2 Application to Transition Construction

The algorithm will proceed for each scenario, scenario transition by scenario transition.

Algorithm 4 FEntity External Transition Generation Algorithm.

Let E' C E be a set of entities;

Let Ty be the set of all system transitions;

Let T'c be the set of all scenario transitions;
Let tc = (scij, he, scix) be a scenario transition;
Let Sy’ C Sy be a set of system states;

Let Sy” C Sy be a set of system states;

Let hy be a system even;

Let py be a system process;

Let sy be a system state;

Let sy’ be a system state.

Ty]
For each tce Tc

A- Construction of potential system transitions.

Sy’ + the set of system states compatibles with sc;;
Sy” « the set of system states compatibles with sc;
E’ < the set of entities not involved in tc

Sy’ and Sy" can be derived automatically from the compatible sets of system states (see Section 5.5 above).

B- Verification of Properties.
System states sy € Sy’ and sy’ € Sy"' are candidates for being the starting and ending state, respectively, of a
system transition.

For each sy € Sy’
For each sy’ € Sy”
If (sy N Tpre(tc) # 0) A (sy' N Tpost(tc) # 0) A (proj(sy, E') = proj(sy', E')
hy < he
py <+ the process specified by pre(tc) and post(tc)

32

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

Table 15: Obtaining System Transitions
Tc | Ty Definition

tey | tyr | (sy2, hei,per, syo)
ty2 | (sys, her, pe, sys)

tea | tys | (sy1,he2,pea, sy1)
tys | (sy1,he2,pea, sy2)

tys | (sy1, hea, pea, sys)

tes | tys | (sy1, hes, pes, syr)
tes | tyr | (sy1, hes,pes, sy1)
tys | (8y2,hca, pea, sys)

tyo | (sys, hca,pea, sys)

tes | tyio | (sy2, hes,pes, sys)
ty11 | (sys, hes, pes, sys)

tee | tyiz | (sys, hes, pes, sys)
ter | tyis | (sys, hea,per, sys3)
()

teg | tyia sys, hcg, pes, sY3

Ty « Ty U {(sy, hy, py,sy')}
End-If
End-For
End-For
End-For

At the end of the algorithm, all external system transition are defined. It is to be noted that a scenario transition
may create several system transitions. Table 15 list the system transitions produced. The resulting system automaton
is given in Figure 11. It should be noted that only transitions tyg ty;3 are redundant, since process pcy and pe; are
actually identical. Furthermore, it is obvious that some processing is missing from this system :

e No transition from sy; to the other states. A reader must register before he/she can borrow book. Therefore,
the registration scenario is missing.

¢ No transition from sys to sys. The return scenario has not been included in the generation process.

1,
ty,
LNLZ

1y,
Vo g °

Figure 11: Final System Automaton

6 Incremental Integration

The approach we have presented in the previous sections supposed that the system specifications were obtained
from all the scenarios describing the system. For instance, we assume that all the entity states are known prior

33

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

to system state generation. However, the algorithms could be modified to allow incremental integration. At each
increment, we would model the new scenarios to consider using the approach presented in Section 4. This is easily
done independantly from already analyzed scenarios. Furthermore, the generation of system states can start from
an already existing partial specification.

7 Discussion/Conclusion

The overal objective of this work was to apply formal methods not only to the result but also to the process of
requirements engineering. A major decision was to use the scenario concept. Our scenario definition was broader
than many in the sense that it is not limited to a sequence of interactions. Moreover the definition is related to
the system aims by the concept of business task. The formal tool used to model the scenario’s behavior was quite
conventional, a finite state machine which was enriched in the scenario analysis step. A major objective was to
integrate data and behavior into a single, formal, specification. This implied elicitation and formal specification of
the data involved in the system. By using the TSER, approach, we were able to specify formally the data involved
in each scenario. Data integration at the system level was also performed with TSER, resulting in a formal, i.e.
third normal form, data model. Integration of data and behavior was defined formally at the scenario level and at
the system level. At the scenario level, the concepts of entity states and of compatibility between entity state and
scenario state, both formally defined, achieved complete semantic integration of data and behavior. The part of
system semantic involved in the requirements was expanded by introducing the concept of business rules, formalized
in first order predicate logic, and by using the rules to trim entity states of impossible or forbidden values. At
the system level, the tie between data and behavior was also achieved by basing the definition of system states
on combinations of entity states, and by basing the definition of system transitions on pre- and postconditions of
scenario transitions. The first objective, using formal methods in the requirements elicitation process was achieved
at the scenario integration stage. The baseline creation steps, all performed at the scenario analysis stage, are mostly
manual, but provide the formal artifacts required by the automatic integration algorithm. And finally, the objective
of controlling a potential combinatory explosion, was achieved by using well-tried methods drawn from database
processing, and semantic information provided by the business rules.

Several decisions taken to achieve our objectives may be discussed. First the formal model used to specify the
system. Any finite state-based model may be criticed for raising the risk of combinatorial explosion of states or
transitions. Two safeguards were used in this work, namely applying database processing techniques, and using
semantic information to trim the states produced by the integration algorithm. The concrete library example used
in this work was larger than most presented in the literature, and the combinatorial explosion was well controlled.
The risk exists nonetheless but there are now systems which can handle finite state machines with thousand of
states. One could also question the entity state concept with data having continuous attributes instead of discrete
ones like in the library example. As a matter of fact, the formal definitions of entity states make no assumption
on the domains of the attributes, and the entity states construction algorithm can easily be adjusted to continuous
values. The integration algorithm might be improved by making more use of the system semantic, for example by
using the business rules to select which Cartesian product to perform first.

Our approach has some limitations. It handles only one instance of each entity and one instance of each scenario.
Moreover, although no relative position of the scenarios is explicitely stated, the approach implies that scenarios can
only be executed sequentially. Work currently under way addresses these limitations, by considering several instances
of entities, the possibility of multiple instances of a scenario running concurrently, the possibity of scenarios running
concurrently.

Finally, because the approach is formal, it has a strong potential for verification and validation. The formal
approach, manual or automatic, is a fertile ground for performing verifications along the requirements elicitation
process and not at the end, on the result, as is usually the case. Work is underway to exploit that formal verification
potential.

References

[1] Gilbert Babin, Francois Lustman, and Peretz Shoval. Specification and design of transactions in information
systems: A formal approach. IEEE Transactions on Software Engineering, 17(8):814-829, August 1991.

34

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

2]

[3]

[4]

[5]

[6]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Anne Dardenne. On the use of scenarios in requiremets acquisition. CIS-TR 93-17, Department of Computer
Science, University of Oregon, Eugene, Oregon 97403, August 1993.

Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed requirements acquisition. Science
of Computer Programming, 20(1-2):3-50, April 1993.

C. J. Date. An Introduction to Database Systems, volume 1 of The Systems Programming Series. Addison-Wesley
Publishing Company, fifth edition, 1990.

Jules Desharnais, Marc Frappier, Ridha Khédri, and Ali Mili. Integration of sequential scenarios. In Sizth
European Software Engineering Conference (ESEC’97), number 1301 in Lecture Notes in Computer Science,
pages 310-326, Zurich, Switzerland, November 1997. Springer-Verlag. published as Software Engineering Notes,
22(6).

Martin Glinz. An integrated formal method of scenarios based on statecharts. Lecture Notes in Computer
Science - Proceedings of the European Conference in Software Engineering 1995, (989):254-271, 1995.

H. Holbrook III. A scenario-based methodology for conducting requirements elicitation. ACM SIGSOFT
Software Engineering Notes, 15(1):95-104, January 1982.

Pei Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyohima, and C. Chen. Formal approach to scenario analysis. I[EEE
Software, 11:33—-41, March 1994.

Cheng Hsu, Yicheng Tao, M’hamed Bouziane, and Gilbert Babin. Paradigm translation in manufacturing
information using a meta-model: The tser approach. Ingénierie des systémes d’information, 1(3):325-352,
January 1993.

Ivar Jacobson, Magnus Christerson, Patrick Jonsson, and Gunnar Overgaard. Object-Oriented Software Engi-
neering - A Use Case Driven Approach. Addison-Wesley, revised edition, 1994.

Ilka Kawashita. Spécification formelle des systémes d’information par la technique des scénarios. Master’s thesis,
Département d’informatique et de recherche opérationnelle, Montréal, Québec, Canada, April 1997. Francois
Lustman (Département d’informatique et de recherche opérationnelle, Université de Montréal).

I. Khriss, M. Elkoutbi, and R. Keller. Automating the synthesis of statechart diagrams from multiple collabo-
ration diagrams. In Proc. International Workshop on the Unified Modeling Language “UML”’98 : Beyond the
Notation, pages 115-126bis, Mulhouse, France, June 1998.

Francois Lustman. Specifying transaction-based information systems with regular expressions. IEEFE Transac-
tions on Software Engineering, 20(3):207-217, March 1994.

Francois Lustman. A formal approach to scenario integration. Annals of Software Engineerig, 3:255-272,
September 1997.

Rational Software Corporation, Microsoft, Hewlett Packard, Oracle, Sterling, MCI, Unysis, ICON, IntelliCorp,
I-Logix, IBM, ObjecTime, Platinum, Ptech, Taskon, Reich Technologies, and Softeam. UML notation guide,
version 1.1, September 1997.

K.S. Rubin and A. Goldberg. Object behavior analysis. Communications of the ACM, 35(9):48-62, September
1992.

James Rumbaugh, Michel Blaha, Willian Premerlani, Frederick Eddy, and Willian Lorensen. Object-oriented
Modeling and Design. Prentice-Hall, 1991.

Peretz Shoval. ADISSA: Architectural design of information system based on structured analysis. Information
Systems, 13:193-210, 1998.

Stéphane Somé, Rachida Dssouli, and Jean Vaucher. Automation of requirements engineering using scenar-
ios. Technical Report 978, Université de Montréal, Département d’informatique et recherche opérationnelle,
University of Montreal, 1995.

35

Francois Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report nc
DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

[20] Stéphane Somé, Rachida Dssouli, and Jean Vaucher. From scenarios to timed automata: Building specifications
from users requirements. In 2nd Asia Pacific Software Engineering Conference APSEC 95, Brisbane, Australia,
December 1995. ASPEC, 2nd Asia Pacific Software Engineering Conference APSEC 95.

36

	reference: François Lustman and Gilbert Babin. Formal Data and Behavior Requirements Engineering: A Scenario-based Approach. Research report no. DIUL-RR-9901. Université Laval. Ste-Foy, Québec, Canada. January 1999.

