
An Object-Based User Interface for Manufacturing Information Integration

Eric E. Westbrook
Digital Equipment Corporation

Maynard, Massachusetts;
Rensselaer Polytechnic Institute

Troy, New York

Waiman Cheung
Lecturer

Chinese University
of Hong Kong
Hong Kong

Gilbert Babin
Department of Decision Sciences

and Engineering Systems
Rensselaer Polytechnic Institute

Troy, New York

 Abstract

User interface tool libraries such as Motif tm from the
Open Software Foundation (OSF) are becoming increas-
ingly prevalent as standards of form and function for
highly functional and attractive graphic user interfaces.
However, the software knowledge required to create and
manipulate reasonable user interfaces using these tools is
very significant in size and scope, and can become perva-
sive and limiting to application development. In this pa-
per, we present a new tool set (WPTSER) that dramati-
cally reduces the amount of knowledge needed to produce
a functional and attractive interface which can be exe-
cuted interchangeably on OSF/Motif tm or character-cell
terminals. WPTSER also provides user input validation
through automatically-generated deterministic finite
automata from developer-provided regular expressions.
To show the capabilities of WPTSER, we use a global
query system developed for a Computer Integrated Manu-
facturing (CIM) system at Rensselaer.

1: The problem

The design of user interfaces and input validation often
accounts for a regrettably large proportion of application
development time. In today’s computing environment,
application development must overcome the following
three fundamental challenges:
1. Heterogeneity among terminal hardware and soft-

ware;
2. Prohibitive complexity of user interface software

tools; and
3. The classic need for full validation of user input.

As the importance of rapid and efficient software de-
velopment increases, the importance of reducing the im-
pact of each of these three issues on application develop-
ment increases directly.

When combined, these issues form an even more sig-

nificant barrier to efficient software engineering.

2: The WPTSER solution

The Windowing Package for the Two-Stage Entity-
Relationship [1] was created to address these problems.
WPTSER’s originally focused on the minimization of de-
velopment effort by providing a facility for the automatic
control of user input syntax, thus enabling the developer
to concentrate on computational details of the application.
Today, WPTSER offers a fundamental set of User Interac-
tion Objects (UI Objects) that are functionally consistent
when used on all supported types of conventional user ter-
minal equipment. These UI Objects can then be used as
building blocks by the application to create the user inter-
face. Through the reduction of formal parameters and the
standardization of object behavior, each WPTSER
UI Object reduces the software effort required to con-
struct and operate an intelligent user interface. While a
small degree of low-level graphics customizability is
naturally sacrificed in achieving this ambitious goal, sig-
nificant customizability is nevertheless retained (for those
few who require it) through OSF/Motiftm window man-
ager resource options which are supported by WPTSER.

3: WPTSER architecture

The application developer accesses WPTSER through
its Application Programming Interface (WPTSER API)
which is is a unique and consistent interface between the
application and the platform-specific libraries. The
WPTSER API provides high-level application procedures
to create, modify, and manipulate the UI Object primi-
tives, which, in turn, implement tools from the CURSES
and OSF/Motiftm user interface libraries.

The WPTSER API is uniform to the application regard-
less of which of the supported implementation platforms
is ultimately selected. With WPTSER, therefore, the selec-
tion of terminal platform becomes truly transparent to the

application developer. Currently, two platforms are sup-
ported: OSF/Motif and CURSES.

Figure 1: WPTSER implementation overview

After designing an application, the developer can cre-
ate an executable binary image to operate with the desired
implementation platform simply by compiling with the
proper compilation option flags. The application devel-
oper does not need to generate multiple software sources
for the same task merely in order to support different
types of terminal equipment and standards.

Indeed, the WPTSER architecture is extendible to sup-

WPTSER API

XWPTSER Library WPTSER Library

Graphic UI Executable Character-Cell Executable

Application Source

I O

IO

CWPTSER Library

OSF/Motiftm Library CURSES Library

Graphic Workstation

Character-Cell Terminal

port any other type of user interface standard, should such
support be required; in that case, ancillary WPTSER
primitives for the new platform would simply be added to
the existing WPTSER libraries.

Naturally, the appearance of UI Objects on different
types of systems will vary, and pointer operations will dif-
fer slightly from keyboard operations. For example, the
OSF/Motiftm implementation supports both keyboard and
pointer traversal, and the character-cell CURSES imple-
mentation provides object type distinction in some cases
at traversal time). Nevertheless, the same objects will be
at the same relative locations on all platforms, and will
provide identical and consistent functions to the user and
the application. Indeed, even the relative layout of the ob-
jects are specified by the application in device-
independent screen coordinates, which WPTSER auto-
matically adjusts on graphic systems for maximum con-
sistency compatibility, and user intuition.

Finally, WPTSER’s overall portability and multi-
platform characteristics would not be complete were it not
for the extensive use of portable standards such as C,
CURSES, and OSF/Motiftm as the building blocks of
WPTSER, thus providing portability across many comput-
ing platforms as well.

4: UI Objects

UI Objects are the basic objects which comprise
WPTSER’s set of user interface building blocks.
WPTSER provides eight UI Objects, each of which has a
unique function and a characteristic appearance.
UI Objects provide services to the application through
callbacks, which are functions that the application desig-
nates for execution upon receipt of a particular user event.
Because of their varying function, some UI Objects have
multiple callbacks while others have only one. Where
possible, all objects comply with applicable standards of
appearance and behavior (e.g. OSF/Motiftm compliance).

4.1: Dialog boxes

The first UI Object type is the dialog box. The dialog
box is the parent container for most WPTSER objects, and
provides the ability to define a particular user interface
subset, presenting or removing that subset at any time.
WPTSER mandates a strict hierarchical dialog stacking
order and does not permit out-of-order input. This policy
permits the application to rest assured that input will oc-
cur within the dialog context it expects, without requiring
it to handle dialog context switching. (In the OSF/Motif
environment, the dialog boxes are manifested as separate
dialog shell windows which are considered transient chil-
dren of the toplevel menu dialog).

Software activation of a defined dialog box brings it to
the top of the stacking order and into full view. Activa-
tion also invokes an internal event loop, during which
WPTSER processes all user input required by objects in
the dialog box (through application-defined callbacks and
input constraints) until the dialog box is closed or deacti-
vated by the application.

4.2: Push buttons

Push buttons allow a user to trigger or activate simple
operations, and are perhaps the most straightforward type
of object supported by WPTSER.

Figure 2: Push button

 When the user activates the push button (with the
mouse, pointer, or keyboard), the application callback
function associated with the button is invoked.

4.3: Fields

Through the use of fields, the application can obtain al-
phanumeric input from the user. The application defines
the field’s input validity requirements using a regular ex-
pression.

Figure 3: Field

As the user attempts input through the field, the input
is validated based on the regular expression, through the
use of a deterministic finite automaton (DFA). The devel-
oper needs only to provide the regular expression; WPT-
SER automatically converts it internally to a minimized
DFA based on known and proven algorithms [2]. Fields
can be associated with activation callbacks if the applica-
tion requires notification of the user’s acknowledging
completion of input.

4.4: Toggle buttons

The toggle button comes in two varieties, and provides
a state or option selection mechanism. The first variety of
toggle button has only one entry, and can be toggled on or
off.

Figure 4: Toggle buttons (off/on)

An indicator (an asterisk in CURSES; a graphic “ac-
tive” indicator in OSF/Motif) displays the current state of
the toggle button. The second variety has many entries.
Toggling the button in this case increments the state of the
button to the next entry. In this case, WPTSER indicates
the button’s current state by changing the button’s label to
the current entry.

4.5: Lists

Often, an application will require the user to identify
some subset of a set of items. For this purpose, WPTSER
provides the list object.

Figure 5: List

The application defines a list of items (each of which
may or may not be associated with a callback) as well as
an optional master callback for the list and the number of
entries selectable. Lists may allow one, some distinct

number, or all entries of the list to be selected. WPTSER
handles all of the selection and deselection details, includ-
ing rejection of excessive or invalid selections. On all
platforms, list items exceeding the defined display size of
the list area can be viewed and selected by scrolling.

4.6: Lines and arrows

Almost no dialog display is very meaningful or useful
without some sort of item grouping or highlighting. Since
intelligent device layout alone may not be sufficient to ac-
complish this task, WPTSER provides lines and arrows.
Lines and arrows allow the user to set off, connect, or
highlight certain areas of a dialog box for greater meaning
to the user. Arrows in WPTSER are used specifically to
connect toggle buttons and are defined by the application
using the identifiers of the two toggle buttons to connect.
The application defines the endpoints of lines in the same
manner as locations of other devices.

4.7: Menus and pulldowns

Like most graphic user interface applications,
WPTSER provides a master “menu bar” for top-level ap-
plication functions. Each item in the menu bar can be ac-
tivated on its own, or may post a pull-down menu associ-
ated with that item. Through the use of callback func-
tions, an application developer can quickly and easily
generate a master command hierarchy to permit maxi-
mum user efficiency and, perhaps more importantly, more
intuitive user understanding of the application’s major ob-
jectives and principles.

4.8: Field lists

The field list is a specialty combination provided for
convenience. In many situations, the application needs to
provide the user with a set of likely options, but would
also like to give the user the opportunity to make a selec-
tion not within the list.

Figure 6: Field list

The field list is ideal for such a situation. By offering

both a field and a list in the same device, the field list of-
fers the user this functionality in an intuitive and efficient
manner. When inactive, the field list has the appearance
of a simple field. When activated, however, the list ap-
pears and the user can either traverse and select from the
list items or enter a selection manually.

5: A case study

A prototype Model-assisted Global Query System
(MGQS) based on the direct knowledge approach [4] has
been built using WPTSER. This prototype is a software
system written in the C language and running on a
Digitaltm workstation. The implementation is an extended
effort from Nogues’ Global Query System [5]. The
global query manager is fully integrated with the metadata
manager (a prototype developed by Bouziane [3] which
consists of a rule processor and a routine manager) to con-
stitute the complete MGQS. It provides functions of
global query formulation, global query optimization, local
query translation, result integration, and on-line intelli-
gence using a rule-based approach. The Computer Inte-
grated Manufacturing Program at Rensselaer is employed
as a test bed for the requirements, design, and implemen-
tation of the prototype.

The prototype MGQS user interface (figure 7) consists
of four windows. The upper left window entitled SPEC-
IFY SCOPE FOR FORMULATION is used for model tra-
versal (browsing). A menu can be triggered for each sub-
title (Application, Subject, and Entity/Relationship). Se-
lected objects are displayed in the entry fields. The logic
of using this window is that when an application (e.g.,
ORDER_PROC) is selected, only the subjects that are
within this application will be listed under the Subject
menu for selection. Similarly, when a subject (e.g., OR-
DER) is specified, only the entities/relationships that are
within the subject will be listed for selection. The center
window of the upper half of the screen, FORMULATE
QUERY, operates similarly and is used for selecting data
object into the global query.

The Data Items button triggers a list of data items
within the boundary specified in the browsing window.
When the second button, Ent./Rel. is activated, the en-
tity/relationship specified in the browsing will be selected
into the query. In this manner, a user can explicitly in-
clude an entity/relationship in a global query for semantic
proposes even though no data item will be retrieved from
it.

The progress of the formulation is displayed in the
window on the lower half of the screen. Selection condi-
tions for the query can be specified by moving the cursor
to the proper row of the QUERY FORMULATION IN
PROCESS window and key in an operator and the associ-

ate value/item of the condition.
The Do Query button in the upper right side of the

screen will execute the formulated global query. The
Save MQL button will translate the formulated global
query into the syntax of the Metadatabase Query Lan-
guage and then save it into a file. Lastly, the QUIT button
will exit from the MGQS system.

6: Conclusion

WPTSER, then, is a new toolkit for development of
graphical user interfaces. This toolkit breaks the three
major barriers in creating user interfaces: Heterogeneity
among terminal hardware (character-cell based or graphic
workstation), the complexity of graphical packages, and
input validation task. WPTSER enables the developer to
create applications that will work on character-cell based
terminal and graphic workstation by virtue of its standard
application interface and the underlying implementation
architecture. The application can be recompiled for dif-
ferent types of terminal hardware without the need for any
changes whatsoever to the application source code. The
use of WPTSER is simplified by the small number of in-
terface devices, their consistency, and the minimization of
the number of their formal parameters. These devices
represent the different classes of interactions necessary to
develop the user interface. Clearly, a large amount of the
technical details associated with interfacing with users is
therefore being handled by WPTSER. Since one of the
most significant aspect of user interface development is

input validation, WPTSER deals with most of the syntacti-
cal aspects of input validation. The developer must pro-
vide the syntax of the input only in the case of fields and
field lists, and even in those cases, the syntax is defined
using simple regular expressions, which not only provide
a programming convenience to the developer, but also
minimize the validation effort.

7: References

1. Babin, G., WPTSER: A Windowing Package for the Two-
Stage Entity-Relationship Model, Tech. Report
#CIMSI91TR220, Computer Integrated Manufacturing,
Center for Manufacturing Productivity and Technology
Transfer, Rensselaer Polytechnic Institute, Troy, N.Y.,
1991

2. Aho, A.V. and J.D. Ullman, Principles of Compiler Design,
Addison-Wesley, Reading, MA, 1977, pp. 73-103.

3. Bouziane, M., Metadata Modeling and Management, Ph.D.
Thesis, Computer Science Department, Rensselaer Poly-
technic Institute, Troy, N.Y., 1991.

4. Cheung, W. The Model-Assisted Global Query System,
Ph.D. Thesis, Decision Sciences and Engineering Systems
Department, Rensselaer Polytechnic Institute, Troy, N.Y.,
1991.

5. Nogues, J., Global Query System, M.S. Thesis, Computer
Science Department, Rensselaer Polytechnic Institute,
Troy, NY. 1990.

Figure 7: Prototype MGQS user interface

	reference: Erik E. Westbrook, Waiman Cheung, and Gilbert Babin. "An Object-Based User Interface for Manufacturing Information Integration." in Rensselaer's Third International Conference on Computer Integrated Manufacturing. Troy, New York, USA. May 1992. pp. 114-118.

