Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

Communication in the WOSTM

Markus Wulfff Gilbert Babin? Peter Kropff Qiaomei Zhong*
February 18, 1999

Abstract

1 Introduction

The rapid development of networked and mobile computing, as demonstrated with the ever growing Internet (or
Web) has lead to a global infrastructure, as well as to the introduction of new IT functionality. The presently
available tools essentially allow users to download files, execute remote pre-defined scripts, fetch mobile code to
be run locally or develop and run distributed applications within specialized metacomputing environments. The
underlying model for those tools consists mostly in a client-server or master-slave setup with the network as the
transport means. However, the role of the network is evolving towards the service delivering platform where services
are offered through delivery contacts. A service may be understood in this context as a piece of software or hardware
(computation or storage capacity, communication channels, specialized drivers, etc.). From a user’s point of view, a
service may be of any kind: the Web, conferencing, database search, Mail, Media, scientific applications or simply
the translation of document from one format to another.

The use of widely distributed computing resources is motivated by various reasons such as load sharing, perfor-
mance aggregation (including the exploitation of workstation idle time), reliability, availability and fault tolerance,
function sharing and data sharing. To take advantage of the global infrastructure, which can be seen as a very
powerful virtual global computer, mechanisms for efficient resource management are needed. However, the hetero-
geneous and dynamic nature of this infrastructure ensure that it is impossible to provide a complete catalogue of all
the resources available. Therefore, new approaches are needed which take into account the inherently decentralized
and dynamic properties of the Internet and distributed systems in general.

The WOS approach to global computing [1, 4] aims to provide service mechanisms which meet the requirements
of the net-centric view of services and processes. This is achieved with the eduction engine or WOS-node, which
integrates client, server, and broker/trader functionalities. The WOS envisages a series of versioned servers or nodes,
each capable of providing a set of services, that can pass on to each other requests when appropriate. Each node
uses warehouses to store and continuously update information about the node and available services and resources.

There are several approaches to integrate the computational resources available over the Internet into a global
computing resource. The closest approach to the WOS is the Jini architecture proposed by SUN [11]. Jini allows one
to build federations of nodes or distributed objects offering different services each relying on its own service protocol.
Lookup services provide location and discovery functionality. The WOS approach is qualitatively different and more
general in that federations, i.e. subsets of nodes of the WOSNet, defining a specific environment are dynamically and
autonomously created. This is achieved with versioning and powerful lookup/discovery protocols and generalized
service communication protocols.

Other efforts to exploit distributed resources for wide-area computing include Linda, PVM, MPI, CORBA,
Netsolve [7], Globe [13], Legion [10], Globus [9] and WebOS[12]. In contrast to the WOS approach, most of the

*Laboratoire PARADIS, Université Laval, Québec, Canada, G1K 7P4
fStudent trainee from Fachbereich Informatik, Universitiit Rostock, D-18051 Rostock, Germany

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

systems require login privileges on the participating machines, or require operating system or compiler modifications.
They usually also require architecture specific binaries. The use of Java addresses the latter issue in a number of
projects including Atlas [2], ParaWeb [5], Charlotte [3], Popcorn [6] and Javelin [8]. Those projects aim mostly to
provide Java oriented programming models for Internet-based parallel computing. Our approach is orthogonal to
these proposals in that Java oriented programming models could be integrated. But the WOS is different in that
it does not require any global centralized catalogue of resources as it is for example necessary in Javelin, ParaWeb,
Atlas or Globus.

While the WOS architecture relies on the decentralized eduction engines with their warehouses, it considers
the communication protocols to be the centralized part. The communication protocols may thus be seen as the
“glue” of the WOS architecture. Communication between nodes is realized through a simple discovery/location
protocol (WOSRP) and a generic service protocol (WOSP). The WOSP protocol is in fact a protocol language with
a corresponding parser and serves to easily configure service-specific protocol instantiations. For example, one WOSP
instantiation could implement an interface to XML or CBL (Common Business Library). At the lower levels of the
protocol stack, we assume the usage of the TCP /IP protocol family.

This paper presents the interfaces required to use both WOSRP and WOSP within a WOS node. It also illustrates
the use of these interfaces in standard WOS communications. We start by describing briefly the structure of WOS
nodes in the next section. Section 3 shows how WOSRP is used within a WOS node to discover the existence of
other WOS nodes and/or particular or just any suitable WOSP versions. Section 4 describes the connectionless
communication mode of WOSP. This mode is used for asynchronous communications between two WOS nodes.
Section 5 shows how a WOSP connection may be established between two WOS nodes. In particular, Sections 3
through 5 provide a detailed description of each required interface specifications, which are written using the Java
language. Utility classes need to support the communications are described in Section 6. We conclude in Section 7
with a brief discussion on the implementation of these interfaces and an outlook of future work.

2 Structure of a WOS node

The structure of a WOS node is shown in Fig. 1. In this paper, we focus on the WOSP/WOSRP interface, which
isolate the network from the WOS node, and on the Eduction & Search Engine Layer, in particular on the WOSP
Version Manager, which handles WOS version information.

Fig. 2 provides a detailed description of the layered node structure. Users interact with the WOS through a User
Interface. That interface provides a unique gateway to the services available on the WOS. All service requests are
made through that interface. The User Interface will display execution status and results, as they come. The Host
Machine Manager handles all service requests received by this node. It is responsible for responding to resource
search requests and for executing services, once approved. The User Manager is responsible for the coordination of
any WOS-service require by/for any given user. It requests and allocates the resources required by a service, based
on information stored in the local warehouses.

The next two layers shown in Fig. 2 implement WOSP. We mentioned earlier that WOSP is versioned. But how
can we implement a single infrastructure to handle a multi-versioned protocol 7 The answer is quite simple. First, we
use WOSRP to lookup the different available WOSP versions, as described later (Sect. 3). Second, WOSP versions
actually differ only on the semantics they convey. A single, open and complete syntax can therefore be defined to
handle the transmission of different universe of discourse. The WOSP Parser handles the conversion to and from
that syntax. The different versions of WOSP are implemented by specializing the WOSP Analyzer module. At
run-time, a warehouse lookup is made to bind the node to the appropriate instance of the WOSP Analyzer, based
on the WOSP version ID.

Finally, the WOSRP layer isolates the WOS node from the network. It provides two basic services : locating WOS
nodes understanding specific WOSP versions and connecting to other WOS nodes using a specific WOSP version.

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

Vsl ™
Network User Profiles
e 2
A Ao
' N7
Qf o
2|/ | =
~ |x \] s
ol 1N A o
Q1 1)
of i3
=y V| i
Job Execution
[}
Control S Control
g -/
/\ £
- o Local Host: c I ®
0 = 7
58 £ . o U 5
< 2 E CPU Time = ser g
w3 © = Resource
5 2 5 Memory Access @ 2
52 2 Services Q Control i
a < |(hardware and software) § ® 3
o
S VS
Remote g Search
Resource < Evaluation
Control o LS
2o i e} \ /
QI o
\ L9 |
N\ = |z 4 2 /
= * A s
Host Machine Manager AR 3' 2 User Manager
of ¥ vl
Eduction & Search Engine 2 o Eduction & Search Engine
Network

Warehouse Warehouse

e

Figure 1: The structure of a WOS node.

3 Requests and Replies on WOSP Version Information

The WOSRP handles any request made by the WOSP Version Manager to locate WOS nodes or to locate WOS
nodes using specific WOSP versions. In this section, we describe how this is accomplished.

3.1 WOSRP Headers for Requests and Replies

WOSRP sends requests to (remote) WOSRP servers using the header shown in Fig. 3. The first sequence in the
WOSRP header is 00 for a request. The first option, “specific or any”, is set to 0 when information about a specific
WOSP version is requested, in which case the version ID must be provided. That option is set to 1 when information
about any WOSP version can be supplied. The second option, “spoken or known”, indicates the level of language
knowledge of the WOS node being interrogated. The option is set to 0 when we require the server to speak that
specific WOSP version. The option is set to 1 when we only ask for a server that knows another server (including
itself) that speaks the WOSP version.

The “hopcount” is the maximum number of nodes to which a message will be forwarded. Each node decrements
this counter by one before it sends the message to the next WOS node. If the counter reaches zero, the message
must not be forwarded to another host. The sender IP address and port number are the location, where all replies
are sent to. At the end of the header, the WOSP version ID is enclosed, if needed (“specific or any” is set to 0).

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

User Interface

Eduction &
Search
Host Machine Engine User
Manager Manager

WOS Protocol
(WOSP)

Analyzer

WOS Protocol
(WOSP)
Parser

WOS Protocol
(WOSP)
Analyzer

WOS Protocol
(WOSP)
Parser

WOS Request Protocol (WOSRP)

Network

Figure 2: Functional layers of a WOS node.

The WOSRP header for replies is shown in Fig. 4. The first sequence for replies is 01. The Server IP address
and port number identify the WOS node that knows/speaks the version of WOSP indicated in the message (Version
ID). The sender IP address and port number is the address of the sender of the message.

3.2 Interface Specifications for Requests and Replies

The communication for these information requests/replies works like shown in Fig. 5. In the first step (1,2)! the
WOSP Version Manager checks the local WOSP Version Warehouse. Then, if no information is found, a WOSRP
client is launched (3) with the following information :

Parameters : - recipient IP address and port number
- hop count
- version ID (required when specific_or_any is set to 1)
Options : - specific_or_any
- spoken_or_known

After sending this message (4), the remote WOSRP Server launches a WOSP Version Manager (5) and sends it
a message with the following information :

- sender IP address and port number

- specific_or_any

- spoken_or_known

- hop count

- version ID (if required by option specific_or_any)

The Version Manager checks its WOSP Version Warehouse (6,7) for information including :

- version ID

- spoken_or_known

- IP address (of the node that speaks the version above)

- port number (where the server is listening for incoming messages)

!The numbers indicated in the text refer to numbers in the figure.

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

Requests (=00) .
Replies (=01)

= = - server port (16 bits ; 2 Bytes
spoken (=0) /known (=1) (1 bit speaks (=0) /knows (=1) (1 bit]
hopcount (16 bits ; 2 Bytes sender port (16 bits ; 2 Bytes sender port (16 bits ; 2 Bytes

00 / T 01 \ T
] = 1 =
ﬂz 5 Server IP address (128 bits ; 16 Bytes) 5
(] [

- F L
T \ T

P =

Sender IP address (128 bits ; 16 Bytes) 5 Sender IP address (128 bits ; 16 Bytes) 5

(] [
L L
Version ID -|_ Version ID -|_

(3584 bits ; 448 Bytes ; 14 X 32 Bytes) (3584 bits ; 448 Bytes ; 14 X 32 Bytes)

= IS

5 5

[v] []

2] 2]

} 32 Bytes] } 32 Bytes]
Figure 3: WOSRP header for requests. Figure 4: WOSRP header for replies.

If no appropriate version is found, the request is sent to another WOS node (not shown in Fig. 5), unless the hop
count value is 0. If the search is successful, the remote WOSP Version Manager launches a new WOSRP client and
sends the reply to the local node (8,9,10).

The local WOSP Version Manager which receives the reply, updates its local WOSP Version Warehouse with
information received (11).

3.2.1 WOSRP Interfaces

Every interface function returns 0 in case of success and a value # 0 if an error occurred, except as indicated.

Step (3)
int WOSRP_Request (InetAddress RecipientIP, short RecipientPort,
boolean SpokenOrKnown, boolean SpecificOrAny,
short HopCount, String VersionID)
Step (8)
int WOSRP_Reply (InetAddress RecipientIP, short RecipientPort,
InetAddress ServerIP, short ServerPort, boolean SpokenOrKnown,
String VersionID)

3.2.2 WOSP Version Manager Interfaces

Step (5)
int WOSPVM_Request (InetAddress SenderIP, short SenderPort,
boolean SpokenOrKnown, boolean SpecificOrAny,
short HopCount, String VersionID)
Step (10)
int WOSPVM_Reply (InetAddress ServerIP, short ServerPort, boolean SpokenOrKnown,
String VersionID)

3.3 The “Bootstrap” Problem : Installing a New WOS node

When a new WOS node is added to the WOSNet, all it knows is the initial list of WOSP versions it understands?. It
knows nothing about other nodes in its neighborhood. The first order of business for the node is therefore to locate

2This initial list still needs to be defined

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

WOSP Version

Information Request

WOSRP WOSRP
Server Client
o A

5

Version Manager

Figure 5: The WOSP version information request/reply communication.

other WOS nodes in its neighborhood. To do this, the WOSP Version Manager will broadcast to its local network a
WOSRP message requesting information about any WOSP version. If no answer is received (i.e., no WOS nodes are
located in the local network), the WOSP Version Manager in the worst case broadcasts to the next network level.
This process continues until at least one WOS node is found or until every machine on the Internet is visited. This
approach will not flood the Internet, since we proceed by recursive waves, instead of broadcasting everywhere at one
time. If at least one WOS node is found, requests for specific WOSP versions may be sent as seen above.

4 The Connectionless Mode

Connectionless communication means that there will be no WOSP connection established to send a message. In
other words, WOS nodes communicate asynchronously.

4.1 WOSRP Headers for Connectionless Communications

The WOSRP header for connectionless communications is shown in Fig. 6. In connectionless mode, the WOSRP
Header is used to identify the appropriate WOSP version to process a message. The WOSP message itself is actually
encapsulated within the WOSRP message. It follows the header and ends with a DLE®/EQT* sequence, marking the
end of the WOSRP message. Any DLE or EOT character enclosed in the WOSRP message itself is escaped with a DLE
character, as illustrated in Fig. 6 (left).

3Data Line Escape
4End Of Transmission

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

Connection (connectionless) (=10)

server port (16 bits ; 2 Bytes;
sender port (16 bits ; 2 Bytes

19 \ T Connection (connection-oriented) (=11)
— [
Server IP address (128 bits ; 16 Bytes) ?
L
\ T
L
Sender IP address (128 bits ; 16 Bytes) 5 3 [\ -.I:
j"_ o) Server IP address (128 bits ; 16 Bytes) =
Version ID —|_ & J_
(3584 bits ; 448 Bytes ; 14 X 32 Bytes) § \ T
0 [l
E T Sender IP address (128 bits ; 16 Bytes) 5
> [0
@ L
J_ Version ID -|_
(3584 bits ; 448 Bytes ; 14 X 32 Bytes)
} 32 Bytes | o
=
’ 2
gl|o o|m
// // ale a8 l
}-header (512 Bytes){|—————— WOSP message (any size) ———] | %2 byt |
f €s 1
Figure 6: WOSRP header for connectionless mode. Figure 7: WOSRP header for connection oriented mode.

7
. 2 jul

B “

|-WOSP commands—|——— Data files —|

oo 2

103

103 1]

3740

103

m

Figure 8: WOSP message format.

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

Note that the WOSP message is encoded in Unicode and has its own structure (see Fig. 8 and [1]). The message
starts with a sequence of commands/replies, qualified by data and metadata. That sequence ends with an EOT
character. Optionally, data files may be appended to the WOS message. Each data file ends with an EOT character.
Any EOT, DLE or EM® character within a data file is escaped with a DLE character. The complete WOSP message ends
with an EM character.

The sequence for connectionless mode messages is 10. The Server IP address and port number identify the WOS
node to which the message is addressed. The sender IP address and port number is the address of the sender of the
message. The Version ID indicates the version of WOSP used in the enclosed message.

4.2 Interface Specifications for Connectionless Communications

The schematic flow for the connectionless mode is shown in Fig. 9. When WOSP Analyzer 1 at node N1 wants
to send a message, it has to call the WOSP Parser with the message to be sent as a parameter (1). The message
must be in triplet format (see Sect. 6.2). The message ID is generated by the WOSP Parser and sent back to the
WOSP Analyzer on successful transmission of the message. Successful transmission means that the WOSP Parser
has generated a message from the triplets and sent that message via WOSRP (2,3) to the remote node.

In the next step, WOSRP adds a header with IP address, port number, version ID to the message. The message
is filtered as explained above. The WOS PID (see Sect. 6.4) is included in the message ID generated by the WOSP
Parser.

WOSRP sends the message through the network (3) to the WOSRP Server at the remote node N2 with the
following parameters :

- Server IP address and port number
- Sender IP address and port number
- version ID

The remote WOSRP searches its local WOSP Version Warehouse (4,5) for the version ID and server name. If
compatible, WOSRP removes the header, launches the corresponding WOSP Analyzer 2 server with the parameters
below and sends it the message (6).

- Sender IP address
- Sender port number
- version ID

At the same time, the local WOSRP returns (4’) and the WOSP Parser sends the generated message ID to the
calling WOSP Analyzer (5).

The WOSP Analyzer 2 (at node N2) interprets its protocol commands and converts the message into triplet
format using the WOSP Parser (7,8). Then, the WOSP Analyzer 2 executes the commands and generates an answer.
This answer, if any, is sent back to the calling node in the same manner as the original message (9-16,12”,13”).

When WOSP Analyzer 1’ receives the answer, it identifies the original sender by its WOS PID, which is stored
in a local WOS Process Warehouse, and delivers the answer to it (17).

4.2.1 WOSRP Interface

Steps (2), (10)
int WOSRP_Connectionless (InetAddress ServerIP, short ServerPort,
String VersionID, InputStream Message)

5End of Message

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

N1: node 1

N2: node 2
WOSP B |
Analyzer 2 processes !

~ node i
I
Processing

Figure 9: Connectionless commun)¥4285# eseiie.

4.2.2 WOSP Parser Interfaces

Steps (1), (9)
String WOSP_SendConnectionless (InetAddress ServerIP, short ServerPort,
String WOSPID,String VersionID, WOSP_ListOfTriplets Triplets)
returns : MessageID if ok, null otherwise
String WOSP_SendConnectionless (InetAddress ServerIP, String WOSPID,
String VersionID, WOSP_ListOfTriplets Triplets)
returns : MessagelD if ok, null otherwise
Steps (7), (15)
WOSP_List0fTriplets WOSP_ReceiveConnectionless (InetAddress SenderIP, short SenderPort,
BufferedReader Message)

4.2.3 WOSP Analyzer Interface

Starting the WOSP Analyzer Client
int WOSP_BeAClient ()
Step (6), (14)
int WOSP_ServeConnectionless (InetAddress SenderIP, short SenderPort, BufferedReader in)
Steps (8), (16)
void WDSP_ProcessBatchMessage(InetAddress SenderIP, short SenderPort,
WOSP_List0fTriplets Triplets)

5 The Connection Oriented Mode

Connection oriented communication occurs when two WOS nodes establish a bi-directional (half-duplex) communi-
cation link. In other words, WOS nodes communicate synchronously.

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

5.1 WOSRP Headers for Connection Oriented Communications

The WOSRP header for connection oriented communications is shown in Fig. 7. In connection oriented mode,
the WOSRP Header is used to identify the appropriate WOSP version to process a message, and to establish the
communication channel between two WOSP Analyzers for that version. The WOSP Analyzers exchange WOSP
messages (as described in Sect. 4) in turn, starting with a message from the WOS node that initiated the connection.
Once a disconnect message is received (by either node), the communication channel is broken.

The sequence for connection oriented mode messages is 11. The Server IP address and port number identify the
WOS node to which the message is addressed. The sender IP address and port number is the address of the sender
of the message. The Version ID indicates the version of WOSP used in the interaction that will follow.

5.2 Interface Specifications for Connection Oriented Communications

To establish a connection between two WOS nodes N1 and N2 (see Fig. 10), a connection setup message must be
sent to the remote node (1). After sending the connection request, the sending node performs an active wait on a
connection ok signal. The local WOSP Parser then sends the request via WOSRP to the remote node (2,3). WOSRP
will only confirm the establishment of the connection to the local WOSP Parser if it receives a message from the
remote WOSRP (normally the request is sent back). The remote WOSRP checks its warehouse (4,5) (as described
in Sect. 4) and launches the WOSP Analyzer 2 (6). If successful, the WOSRP at the calling node will be informed
about success (6”) and cai} rogesstigirn (7°,8’). If not, the remote WOSRP shuts down the connection®.

Processing

WO%?iglusrsesegﬁ;: Connection oriented communication mode.

If the connection is properly setup, the remote node changes to wait mode on WOSP messages (7). Now, all
messages between node N1 and node N2 are sent over that connection using WOSP only (8,9). Once a message is

6The connection is realized as a TCP connection

10

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

received by the remote WOSP Parser, node N2 exits its wait mode and returns the message received to the WOSP
Analyzer 2 (10). The dialog uses a send-wait-receive sequence. Therefore, after sending its first message, node N1
waits for a message (11) sent by node N2 (12-14), and so on (15-18), until either N1 or N2 stops sending replies and
close the communication channel.

5.2.1 WOSRP Interface

Step (2)
WOS_Connection WOSRP_SetupConnection (InetAddress ServerIP, short ServerPort,
String VersionID)
returns : a connection object if ok, null otherwise

5.2.2 WOSP Parser Interfaces

Step (1)
WOS_Connection WDSP_SetupConnection(InetAddress ServerIP, short ServerPort,
String VersionID)
returns : a connection object if ok, null otherwise
Steps (8), (12), (16)
int WOSP_SendConnection (BufferedWriter out, WOSP_ListOfTriplets Triplets,
String WOSPID)
Steps (7), (11), (15)
WOSP_ListO0fTriplets WOSP_ReceiveConnection (BufferedReader in)
returns : List of triplets if ok, null otherwise

5.2.3 WOSP Analyzer Interfaces

Starting the WOSP Analyzer Client
int WOSP_BeAClient ()
Establishing the WOSP connection
WOS_Connection WOSP_EstablishConnection (InetAddress ServerIP, short ServerPort,
String VersionID, WOSP_ListOfTriplets Triplets,
String WOSPID)
returns : a connection object if ok, null otherwise
Step (6)
int WOSP_ServeConnection (WOS_Connection connection)
Step (10), (14), (18)
WOSP_List0fTriplets WOSP_ProcessInteractiveMessage (WOSP_ListO0fTriplets Triplets)

6 Other Implementation Considerations

This section describes the different data classes not part of the Java standard packages.

6.1 Pipes in WOS Communication

Pipes are used in two cases. In the connectionless communication mode (described in Sect. 4), pipes are used to send
the message from the WOSRP Server to the WOSP Parser on the server side (steps 6 and 14 in Fig. 9). In this case,
the data transmitted must be filtered to remove extraneous DLE characters and the terminating EOT character.

The second case for using pipes occurs in the connection oriented communication mode (see Sect. 5). In this
mode, the local and the remote WOSP Parser are connected by two pipes, managed by the WOSRP server. These
pipes do not perform any filtering, since the messages are sent directly from and to the WOSP Parser level.

The WOSRP_Pipe class is defined to answer both needs. It runs as a thread launched by the WOSRP server. Two
constructors are available :

11

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

WOSRP_Pipe(BufferedReader in, PrintWriter out, boolean filtering);
Standard constructor.
WOSRP_Pipe (BufferedReader in, PrintWriter out,
boolean filtering, int trace_level, String label);
Constructor to set debugging trace.

6.2 The Triplet Format of Messages

The WOSP Analyzer passes a message to be sent by the WOSP Parser as a list of triplets. The class which contains
these triplets and the triplet count is class WOSP_List0fTriplets. The type of each triplet is defined by the class
WOSP_Triplet. A triplet is composed of the following elements :

- String name (the identifier of the triplet)
- Integer type (data, metadata, setup_command, ...)
- String value (the value associated to the name)

To generate a triplet, the class WOSP_Triplet makes the following constructor methods available to the user :

WOSP_Triplet(); Constructor for a empty triplet.
WOSP_Triplet (name, type, value); Constructor for a complet triplet.
WOSP_Triplet (name, type); Constructor without value.
WOSP_Triplet(type, value); Constructor without name.

and also the methods

void setName (String) Set the triplet name.
void setType(int) Set the triplet type.
void setValue(String) Set the triplet walue.
String getName () Get the triplet name.
Integer getType() Get the triplet type.
String getValue() Get the triplet wvalue.

to set the values of a triplet. The list of triplets must respect the following syntax, based on the type of each triplet :
+[command *[metadata]* *[data *[metadata]* J]*]+ *[file]*
where

command are triplets of type setup, execution or query
metadata are triplets of type metadata

data are triplets of type data

file are triplets of type data file

The semantics behind this is as follows : metadata triplets always follow the command or data triplet they describe,
data triplets always follow the command triplet they apply to. This, in fact, is the same syntax and semantics
associated with WOSP messages.

When the WOSP Analyzer sends the triplets, each command triplet has as value the number of triplets applying
to that command (command, data and metadata triplets).

When the WOSP Analyzer receives triplets, the value of command triplets is the message ID and the sequence
ID of the command (see Sect. 6.4).

6.3 The Class WOSP_List0fTriplets

As described above, all triplets (of type WOSP_Triplet) for a message are stored in a WOSP_ListDfTriplets in-
stance. A list of triplets consists of one or more triplets and the count of triplets. The constructor method
WOSP List0fTriplets() creates an empty list. The following methods are available to manipulate the triplet list.

12

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

getTriplet () Get the current triplet.

getTriplet (int) Get the triplet at position.

head () Head returns the first triplet from list.
insertTriplet(Triplet) Insert node after the current in list

and set current to that node.
insertTriplet(Triplet, int) Insert node after position.
removeTriplet () Remove the current node from list and
set current to the next node if present,
otherwise to the previous node (the end).

removeTriplet (int) Remove node at position.
setCurrent (int) Set current to position.
setCurrentToNext () Set the current to the next node unless

the next node is the anchor.
setCurrentToPrev() Set the current to the previous node

unless the next node ¢s the anchor.
setTriplet(Triplet, int) Substitutes the triplet at position with triplet.
tail() Tail returns the last triplet from list.
tripletCount () Get the count of triplets.

6.4 WOS PID

The WOS PID (process identifier) is a mapping of the local process PID (e.g., a Unix PID) to a system independent
format. It identifies each WOS process uniquely with a time-stamp. The format is the following :

YYYYMMDDhhmmssttt

where ttt represents milliseconds. The WOS PID will be stored in a local WOS Process Warehouse together with
the local process ID.

6.5 Message ID

The message ID is used to identify a message and the sender of a message within the WOSNet (the network of all
WOS nodes). Such an ID contains the IP address or the fully qualified host name (fqh) of the sender, the WOS PID
(see above) of the sending WOS process, and a time-stamp (same format as WOS PID). So the format is a follows :

{IPaddr|fqh}:WOSPID:YYYYMMDDhhmmssttt-seqID

The sequence ID (seqID) is not really part of the message ID. It is added to identify a command within a message.
It consists of two values — the index of this triplet within the message and the number of triplets related to this
triplet. The format of a sequence ID is -index-related.

6.6 Class WOS_Connection

Once a TCP/IP connection is established between to nodes, we need to pass along the stream descriptors used
to send and receive messages. The class WOS_Connection serves that simple purpose. The constructor method
W0S_Connection(InputStream in, OuputStream out) creates a BufferedReader instance and a BufferedWriter
instance for streams in and out, respectively. The following methods are available to manipulate the streams :

getIn() Get a reference to the BufferedReader of the connection.
getOut) Get a reference to the Bufferediiriter of the connection.

7 Conclusion

A prototype version of the interfaces presented here was developed using jdk 1.1.6. Tests were initially performed
in a Linux environment. The WOSP Parser and WOSP Analyzer were developed and tested first. Preliminary

13

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

Table 1: Performance analysis.

Mode Message Min. transfer | Max. transfer | Avg. tranfer | Std. dev.
size (Bytes) time (ms) time (ms) time (ms)
Connectionless 1606 1009 1257 1180.0 43.3
2606 977 1255 1031.7 67.8
3606 1034 1278 1072.5 45.4
4606 1078 1276 1134.2 43.3
5606 1129 1210 1169.3 20.5
6606 1187 1478 1250.9 74.6
7606 1244 1315 1275.3 20.3
8606 1284 1641 1371.7 86.5
9606 1348 1422 1382.0 21.8
10606 1405 1613 1457.6 51.2
Connection oriented 1600 540 576 5564.9 10.0
2600 147 161 152.6 3.8
3600 191 207 198.7 4.1
4600 254 266 256.1 2.2
5600 291 473 342.0 47.3
6600 398 671 516.5 67.6
7600 504 773 606.3 57.3
8600 604 849 723.8 69.4
9600 678 903 795.1 66.5
10600 707 1035 901.5 94.2

performance test can be found in Table 1, which shows the influence of the message size on the transfer time (in
milliseconds). Fig. 11 shows how the average transfer time changes with the message size. We then worked on the
WOSRP layer. Finals tests were performed in Linux, WinNT, and AIX environments. Only simple reconfiguration,
which is required anyway from any WOS installation, we needed for the prototypes to work properly. This includes
the path to launch Java virtual machine, the path to the WOS temporary directory, standard ports for local and
remote WOS communications.

WOSRP requests and replies are realized using UDP datagrams, and are serviced one at a time. We realized that
the buffer used by the UDP server was shared by all the threads launched to serve each datagram. This materialized
in scrambled messages. By serving one datagram at a time, we avoid this message scrambling problem at the cost of
a slower processing time. However, every datagram received is queued and eventually processed.

The connectionless and connection-oriented modes are realized using TCP connections. Although the connection-
less mode is an asynchronous communication mode, the use of TCP libraries provided a more robust transmission.
On one hand, connectionless messages have varying length which makes the use of UDP datagrams difficult. For
instance, we would have to reassemble the datagrams to recreate the original message. On the other hand, even
though the communication is asynchronous, we still want the messages to be transmitted without errors and reliable.

The connection oriented mode was tested by simulating a dialog between two nodes. One problem was difficult to
solve: it turned out that the communication link is broken before the end of file is detected by the process receiving
the information. We had to properly catch this exception to properly terminate the interaction between the nodes.

The next step is to develop a real WOSP Version Manager, along with warehouse management tools. We also
will develop a generic WOSP Analyzer to handle the execution of commands on any remote system.

References
[1] Gilbert Babin, Peter Kropf, and Herwig Unger. A two-level communication protocol for a Web Operating

System (WOS™TM). In Euromicro Workshop on Network Computing, pages 939-944, Visterds, Sweden, August
1998.

14

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

1800
Connectionless mode

1600

H
N
o
o

fott

-

1000

800

!
i

600

Average Processing Time (ms)

Connection oriented mode

200

0 2000 4000 6000 8000 10000 12000
Message size (Bytes)

Figure 11: Average transfer time vs. message size.

[2] J.E. Baldeschwieler, R.D. Blumofe, and E.A. Brewer. Atlas: An infrastructure for global computing. In Seventh
ACM SIGOPS European Workshop on System Support for Worldwide Applications, 1996.

[3] A. Baratloo, M. Karaul, Z. Kedem, and P. Wykoff. Charlotte: Metacomputing on the web. In 9th Conference
on Parallel and Distributed Systems, 1996.

[4] S. Ben Lamine, P.G. Kropf, and J. Plaice. Problems of Computing on the Web. In A. Tentner, editor, High
Performance Computing Symposium 97, pages 296 — 301, Atlanta, GA, April 1997. The Society of Computer
Simulation International.

[5] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. Towards world-wide supercomputing. In Seventh ACM SIGOPS
FEuropean Workshop on System Support for Worldwide Applications, 1996.

[6] N. Camiel, S. London, N. Nisan, and O. Regev. The POPCORN project: Distributed computing over the
Internet in java. In 6th International World Wide Web Conference, April 1997.

[7] H Casanova and J. Dongarra. NetSolve: A network server for solving computational science problems. Interna-
tional Journal of Supercomputer Applications and High Performance Computing, 3(11):212-223, 1997.

[8] Bernd O. Christiansen, Peter Cappello, Mihai F. Ionescu, Michael O. Neary, Klaus E. Schauser, and D. Wu.
Javelin: Internet-based parallel computing using java. In ACM Workshop on Java for Science and Engineering
Computation, June 1997.

[9] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International Journal of Super-
computer Applications, 1997.

[10] A.S. Grimshaw, W.A. Wulf, J.C. French, A.C. Weaver, and P.F. Reynolds. The Legion vision of a Worldwide
Virtual Computer. CACM, 40(1), January 1997.

[11] Sun Microsystems. Jini. http://java.sun.com/products/jini/whitepapers/.

15

Markus Waulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université L
Ste-Foy, Québec, Canada. February 1999.

[12] Amin Vahdat, Thomas Anderson, Michael Dahlin, Eshwar Belani, David Culler, Paul Eastham, and Chad
Yoshikawa. WebOS: Operating system services for wide area applications. In Proceedings of the Seventh IEEE
Symposium on High Performance Distributed Systems, Chicago, IL., USA, July 1998.

[13] Maarten van Steen, Philip Homburg, and Andrew S. Tanenbaum. The architectural design of Globe: A wide-area
distributed system. Technical Report IR-422, Vrije Universiteit, March 1997.

16

	reference: Markus Wulff, Gilbert Babin, Peter Kropf, and Qiaomei Zhong. Communication in the WOSTM. Research report no. DIUL-RR-9902. Université Laval. Ste-Foy, Québec, Canada. February 1999.

