
ISSN 0832-7203

An Automatic Validation Model
for Security Mechanisms

Par : Fathya Zemmouri
Gilbert Babin
Peter Kropf

Cahier du GReSI no �����

Copyright c� ���� . HEC Montŕeal.
Tous droits ŕeserv́es pour tous pays. Toute traduction et toute reproduction sous quelque forme que ce soit est interdite.
HEC Montŕeal, 3000, chemin de la Ĉote-Sainte-Catherine, Montréal, Qúebec, H3T 2A7 Canada.
Les textes publiés dans la śerie des Cahiers du GReSI n’engagent que la responsabilit de leurs auteurs.

An Automatic Validation Model for Security Mechanisms

Fathya Zemmouri
Département d’informatique et de recherche op´erationnelle

Université de Montréal
C.P. 6128, succ. Centre-ville

Montréal, Québec, Canada H3C 3J7
zemmourf@iro.umontreal.ca

Gilbert Babin
Service de l’enseignement des technologies de l’information

HEC Montréal
3000, chemin de la Cˆote-Ste-Catherine
Montréal, Québec, Canada H3T 2A7

tél: (514) 340-6291
fax: (514) 340-6132

Gilbert.Babin@hec.ca

Peter Kropf
Département d’informatique et de recherche op´erationnelle

Université de Montréal
C.P. 6128, succ. Centre-ville

Montréal, Québec, Canada H3C 3J7
tél: (514) 343-2446
fax: (514) 343-5834

kropf@iro.umontreal.ca

Copyright c� ���� . HEC Montŕeal.
Tous droits ŕeserv́es pour tous pays. Toute traduction et toute reproduction sous quelque forme que ce soit est interdite.
HEC Montŕeal, 3000, chemin de la Ĉote-Sainte-Catherine, Montréal, Qúebec, H3T 2A7 Canada.
Les textes publiés dans la śerie des Cahiers du GReSI n’engagent que la responsabilit de leurs auteurs.

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

Abstract

In this paper, we propose a model to automatically validate the composition of multiple security
mechanisms in the context of transactions between multiple participants. The goal of the validation
is to demonstrate that the different security mechanisms preserve conformity to their specifications
when used in combination. The underlying principle of the proposed approach is illustrated with
a case study in the context of e-commerce. Specifically, we show the combined use of a digital
signature, which provides data integrity and non-repudiation, a digital certificate, which guaranties
authentification of participants, and a symmetric cryptographic algorithm, which ensures confiden-
tiality.

Résuḿe

Cet article présente un mod`ele de validation automatique de la composition d’un ensemble de
mécanismes de s´ecurité, utilisés pour s´ecuriser des transactions d’affaires entre plusieurs partici-
pants. L’objectif de cette validation est de d´emontrer que chaque m´ecanisme reste conforme aux
spéficications, et ce, malgr´e le fait qu’il soit utilisé en conjonction avec d’autres m´ecanismes. Nous
montrons comment l’approche de validation peut ˆetre utiliséeà l’aide d’un exemple de transaction
dans le contexte du commerce ´electronique. En particulier, l’approche servira `a valider la com-
position d’une signature num´erique, qui permet de v´erifier l’intégrité des donn´ees et garantit la
non-répudiation, d’un certificat num´erique, qui garantit l’authentification des participants, et d’un
algorithme de cryptographie `a clé symmétrique, qui assure la confidentialit´e.

Mots clés

Sécurité, Validation de protocoles, Commerce ´electronique.

Copyright c� ���� . HEC Montŕeal. 3

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

1 Introduction

The execution of secure electronic transactions between a number of participants requires a set
of appropriate security mechanisms. There exist several methodologies to derive a solution that
applies to the various trust problems, for example theSecAdvise advisor [5, 6]. The model pro-
posed bySecAdvise, adapted from [4], defines a space of trust problems divided into subspaces
of independent problems. The goal ofSecAdvise is to provide an environment which integrates
security mechanisms and which dynamically provides a trust solution that satisfies the security
constraints required by the parts wishing to carry out a transaction without risk. The trust solution
is a composition of trust units (a security mechanism or a security infrastructure) which reduces
the risks under the current context/transaction to secure. However, before proposing a combination
of units as a solution to reduce a whole set of risks, the following three steps should be considered:

1. validation of each unit belonging to the solution by validating its specification in a formal
way, thereby contributing to the automation of the validation of the whole solution;

2. validation of the composition of units, which claims to cover a set of risks in a given environ-
ment. With this validation, one should prove that the composition is free from any intrinsic
fault and that the security properties are checked;

3. detection of intrusion by simulating a validation model with an intruder.

In order to be able to carry out these steps, the following issues must be considered:

� One has to prove that a trust unit claiming to cover a risk, respects its engagement.
Even by making the assumption that only the holder of the key can obtain the encrypted
text (the assumption of perfect coding), attacks by usurpation of identity abound [1]. The
aspects to be checked are of logical type. For example, theNeedham-Schroederpublic key
protocol [2] was employed for more than fifteen years before it was attacked.

� given two trust units��
1 and�� covering respectively two disjoined risks�� and ��, does

�� � �� really cover�� � �� ?
A key question is whether or not the introduction of another mechanism affects the effec-
tiveness of the first. The problem arises because�� � �� is in fact a new protocol and the
development of a new protocol should be validated to correct any fault in the rules of proce-
dures.

2 Case study

To illustrate the concepts introduced in the previous section, in the following section, we dis-
cuss a particular environment. Our case study consists of the validation of the union of four security
mechanisms to cover a set of security risks. We suppose that two participants, a supplier and a cus-
tomer, want to perform an electronic transaction and that they want to authenticate each other.

1We use the notation defined in [5] and refined in [6] to identify elements of the security problem and solution.

Copyright c� ���� . HEC Montŕeal. 4

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

They wish to verify that the contents of the data exchanged remain confidential and unchanged,
and that it is possible to prove non-repudiation on both sides. We use thePROMELA language for
the formal specification andSPIN as the tool to perform automatic testing.

There are four security risks to cover in this context/transaction, namely:

� ��: eavesdropping risk,

� ��: tampering risk,

� ��: message forgery risk,

� ��: transaction refutation risk.

We assume that the following trust units were selected by a method that carries out all necessary
calculations (transaction cost, maximum security risk reduction):

� ��: theSSL protocol to cover�� � �� � ��,

� ��: a digital signature to cover��.

In fact,�� (SSL) is a composition of three atomic security mechanisms, cryptography to cover
��, a digital certificate to cover�� and a hash function to cover��. We therefore have�� �
���

�
� ��

�
� ��

�
�.

The two transaction participants are referred to asclient andserver. The context/transaction
is noted�. We have:

� ��, ��, ��, �� � �� where� is the set of security risks,

� �� � ����, �� � �� where� is the set of trust units (security mechanisms),

� ��, ��, �� � ���
and�� � ���

, where���
is the set of security risks associated to the trust

unit ��,

� �� � ���� ��� ��� ����

� �� � �����	
� �������� the set of participants in the context/transaction�,

� to simplify the model of validation, we assume that the client and the server trust the same
certification authorities.

We assume, without proving it, that��� � �� � ��, where��� denotes the trust solution selected to
secure the context/transaction�, because our goal is not to demonstrate that�� and�� compose the
right trust solution in context�.

Copyright c� ���� . HEC Montŕeal. 5

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

ClientHello

ServerHello
Certificate*

ServerKeyExchange*

CertificateRequest*

ServerHelloDone

Certificate*

ClientKeyExchange

CertificateVerify*

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

ApplicationData

ApplicationData

Client Server

* optional message

Figure 1: Messages exchanged whenSSL opens a new session.

3 SSL validation model

As stated earlier,SSL covers risks��, �� and�� by providing the following three security services:

connexion confidentiality by using symmetric ciphering.SSL can negociate symmetric algo-
rithms likeDES, RC4, etc.;

authentification and identification of transaction participants.SSL uses public key cryptogra-
phy. Different algorithms can be used:RSA, DSS, etc;

Data integrity. SSL adds a hashcode, called aMAC to the data exchanged to verify its integrity.
Hash functions such asSHA or MD5 are used to compute thisMAC.

SSL splits up the message to be transmitted in data blocks. It then compresses them, applies a
MAC, and transmits the results to the other communication point. Messages received by the other
pair are then deciphered, checked, decompressed, and assembled.

3.1 SSL messages

Figure 1 illustrates the messages exchanged between a client and a server whenSSL opens a new
session. The messages exchanged, according to their chronological order are:

HelloRequest Notification that the client should begin the negotiation process anew by sending a
client hello message;

ClientHello Contains:

� the version of the SSL protocol by which the client wishes to communicate during this
session,

Copyright c� ���� . HEC Montŕeal. 6

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

� a client-generated random structure (client random),

� the ID of the session the client wishes to use for this connection (sessionID),

� a list of the cryptographic options supported by the client, sorted with the client’s first
preference first (cipher suites),

� a list of the compression methods supported by the client, sorted by client preference
(compressionmethods).

ServerHello Contains:

� the version of theSSL protocol supported by the server,

� a random number (serverrandom),

� the identifier of session (sessionID),

� the single cipher suite selected by the server fromClientHello.cipher suites.

� the single compression algorithm selected by the server fromClient-
Hello.compressionmethods.

Certificate Contains the server’s or client’s (if the server claims it and the client has one) digital
certificate. It must be aX.509 certificate version 3.0 which contains the server’s public key
contained in theServerHellomessage. AX.509 certificate has the following form:

������	
�� ������ �
�� � �� �
�� � ����� ���

�� ��������� �
�� � �� �
�� � ����� �� ��

where:

����� �
�� is the server’s or client’s name,

�� �
�� is certification authority’s name,

����� �� is an entity’s public key, this is the key to be certified,

�� ����� is the authenticator of�, computed by ciphering� with certification authority’s
private (secret) key,

��� hashcode of�;

ServerKeyExchange Sent by the server only if it has no digital certificate, or has only a certificate
for digital signature;

CertificateRequest Sent by the server to request a certificate from the client;

ServerHelloDone Indicates that the server has finished sendingServerHelloand subsequent mes-
sages;

ClientKeyExchange Contains thePreMasterSecret, encrypted with the server’s public key;

Copyright c� ���� . HEC Montŕeal. 7

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

CertificateVerify Used to provide the server with explicit verification of a client certificate. This
message contains the following value:
�
����
������	��� � �
����
����
�� ����
��� ��
������	�����
whereHash is either theMD5 or SHA algorithm;handshakemessagesrefers to all hand-
shake messages starting fromClientHelloup to but not including this message;

Finished Always sent immediately after aChangeCipherSpecmessage to verify that the key ex-
change and authentication processes were successful. TheFinishedmessage is the first
message protected with the just-negotiated algorithms, keys, and secrets. TheFinishedmes-
sage containshandshakemessageswhich include allhandshake messages starting atClien-
tHello up to, but not including, thisFinishedmessage.

Recipients ofFinishedmessages must verify that the contents are correct and not altered by an
intruder, by comparing its content with messages received so far. The handshake concludes with
the server sending theChangeCipherSpecandFinishedmessages.

3.2 SSL formal specification with PROMELA

A formal model ofSSL’s cryptographic protocol must include two participants (clientandserver)
who exchange messages in conformance with the protocol rules. The aim of such a model is
to help to isolate security faults in the protocol itself, if they exist, and not in the cryptographic
system used bySSL. Therefore, we assume that the cryptographic system used bySSL is perfect,
its modeling remaining abstract. In other words, we suppose that:

� the only way to decipher a message is to have the key with which it was ciphered,

� an encoded message cannot reveal the key with which it was ciphered, and

� the ciphered message has enough redundancy so that the decoding algorithm can detect if
the message was ciphered with the right key,

It is thus possible that the model may not reveal other vulnerabilities caused by the cryptographic
system used bySSL. In our model, the client and the server are represented byPROMELA pro-
cesses, communicating via shared channels.

3.2.1 Variables definition

A variable can be any identifier, random key, nonce or data used by the protocol. The set of
variables was obtained after a thorough analysis of theSSL specification. We have identified the
following variables (defined usingPROMELA):

mtype � �

client, server, intruder, hello request,
client hello, server hello, client certificate,
server certificate, certificate request,
server hello done, pre master secret,

Copyright c� ���� . HEC Montŕeal. 8

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

handshake messages hash, finished hash,
handshake message master secret

�

3.2.2 Channel definition

Channels are the communication mechanism betweenPROMELA processes. We defined a chan-
nel type for each message format used bySSL. SSL messages have the following formats:

� HelloRequest�server�,

� ClientHello�client, clienthello�,

� ServerHello�server, serverhello�,

� Certificate�client, clientcertificate,�client certificate�SK�client��,

� Certificate�server, servercertificate,�servercertificate�SK�server��,

� CertificateRequest�server, certificaterequest�,

� ServerHelloDone�server, serverhello done�,

� ClientKeyExchange��pre mastersecret�PK�server��,

� CertificateVerify�client,��handshakemessages�HASH�SK�client��,

� Finished�client,�handshakemessages, client, masterSecret�HASH�,

� Finished�server,�handshakemessages, server, masterSecret�HASH�.

In order to validate the protocol, we assume that every message transmitted byclient or server
is intercepted byintruder, then retransmitted to the appropriate destination (i.e., the intruder can
listen on every communication channel). To achieve this, every message sent includes the identity
of the participant concerned with the transmission, the other participant always beingintruder.
Thus we need the following channels:

chan HelloRequest = [0] of �mtype�;
chan ClientHello = [0] of �mtype, mtype�;
chan ServerHello = [0] of �mtype, mtype�;
chan Certificate = [0] of �mtype, mtype, mtype, mtype�;
chan CertificateRequest = [0] of �mtype, mtype�;
chan ServerHelloDone = [0] of �mtype, mtype�;
chan ClientKeyExchange = [0] of �mtype, mtype�;
chan CertificateVerify = [0] of �mtype, mtype�;
chan Finished = [0] of �mtype, mtype�;
chan NoCertificate = [0] of �mtype�;
chan ChangeCipherSpec = [0] of �mtype�.

Copyright c� ���� . HEC Montŕeal. 9

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

TCP ? ClientHello

TCP ! ServerHello

TCP ! Certificate

TCP ! ServerHelloDone

TCP ! CertificateRequest

TCP ? ServerHelloDone

TCP ? CertificateTCP ? NoCertificate

TCP ? ClientKeyExchange TCP ? ClientKeyExchange

TCP ! CertificateVerify

TCP ! ClientKeyExchange

TCP ? ChangeCipherSpec

TCP ? Finished

TCP ! ChangeCipherSpec

TCP ! Finished

Figure 2: Server EFSM of the composition
SSL/difital signature.

TCP ? ServerHello

TCP ? Certificate

TCP ? ServerHelloDone
TCP ? CertificateRequest

TCP ! CertificateTCP ! NoCertificate

TCP ! ClientKeyExchange TCP ! ClientKeyExchange

TCP ? CertificateVerify

TCP ! ClientKeyExchange

TCP ! ChangeCipherSpec

TCP ! Finished

TCP ? ChangeCipherSpec

TCP ! ClientHello

TCP ! ServerHelloDone

TCP ? Finished

Figure 3: Client EFSM of the composition
SSL/difital signature.

These channels are declared as global variables so that all processes may access them.
For example, if theserverprocess sends the messagePK(client)�message�, the following in-

struction is used:

c2pk ! server, message, client

whereserveris the sender,messageandclient are the message body (client represents the public
keyPK(client)). The message reception by a particpant is similarly expressed by:

c2pk ? eval(server), x1, eval(client).

This instruction will only accept as valid, messages with receiverserver(this test is used to make
sure that the message is indeed addressed toserver) and withclient as the value of the third field.

3.2.3 Server and client processes

Processes representingSSL participants must be parameterizable with data that change from one
session to another or from one instance to another. Their definition must also include conditions
representing protocol governing rules, which must be checked or validated.

These processes are illustrated in Figure 2 (server process) and 3 (client process), using ex-
tended finite state machines (EFSMs). ThePROMELA code was generated from these EFSMs.

Copyright c� ���� . HEC Montŕeal. 10

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

3.3 Defining Correctness Claims

3.3.1 Authentification checking

We express the fact thatserveris correctly authenticated byclient with the following predicate:
client commits to a session with server only if server accepts to share a protocol instance
with client .

A similar predicate expresses the reciprocal property, thatclientwas correctly authenticated by
server.

Each of these predicates may be represented using a number ofPROMELA global boolean
variables, which becomestrueduring protocol execution. These are:

bit PclientInstance � 0;
bit PclientCommit � 0;
bit PserverInstance � 0;
bit PserverCommit � 0;

PclientInstance istrue if, and only if, client participates in a session of the protocol withserver.
PserverInstance istrue if, and only if, serverparticipates in a session of the protocol withclient.
PclientCommit istrue if, and only if, client commits to a session withserver. PserverCommit is
true if, and only if,servercommits to a session withclient.

Hence,serverauthentification byclient can then be checked by making sure thatPserverIn-
stancebecomestrue beforePclientCommit. In a similar way, the authentification ofclient by
servercan be checked by making sure thatPclientInstancebecomestrue beforePserverCommit.
We used the precedence property, expressed as follows, to check the authentification ofclient to
serverand theserverto client:

�������	������������ � ���	�����������������������
�	�����

�������������������� � �����������������	���������
�	����

3.3.2 Secrecy checking

The confidentiality criteria can only be validated with the presence of anintruder process. This is
done by checking that the message exchanged betweenclient andserverdoes not become part of
the intruderknowledge. This criteria must be checked at all states of the state space.

In the intruder process, we declare a booleanmessagewhich is initialized tofalse. This vari-
able becomestrue if the intruder manages to intercept the contents of the message exchanged be-
tween the two parties involved in the communication. Consequently, to verify confidentiality of the
data exchanged in any state belonging to the state space, we simply use the followingLTL formula:

������
��

3.3.3 Integrity checking

Integrity is checked by comparing the message sent byclient (or server) with that received by
server(or byclient).

Copyright c� ���� . HEC Montŕeal. 11

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

3.3.4 Validation results

The properties to validate exposed so far, that is authentification, integrity, confidentiality and non-
repudiation, are positive in all the state space.

Tests automatically carried out bySPIN are also positive: never-claim, assertion violations,
cycle checks, and invalid endstates, which express the correctness claims of the protocol, apart
from the security services it provides.

4 The intruder process

The aim of the validation steps presented so far was to analyze the composition�SSL, digital
signature� in the absence of an intruder. This validation is necessary for any trust unit composition,
presented as a solution to a context/transaction.

Indeed, each composition of trust units constitutes in essence a new protocol. Therefore, we
need to demonstrate that this new protocol is free from any intrinsic fault. However, validation
is not complete until we introduce theintruder model. To assure reliability, the generation of the
intruderprocess must be automatic. In other words, starting from the specification of a set of trust
units, we should be able to automatically generate the behavior of an illegitimate agent, represented
by anintruder process.

4.1 Intruder knowledge

The intruder must interact with the legitimate participants of a context/transaction, according to
the ability the validation model provides. It must also be able to behave like a normal user of an
open network.

At any point in time, the intruder’s behavior depends on knowledge acquired until that point.
Before each transaction execution, we assume that the intruder knows a set of data, such as the
intruder’s identity, his public key, the identity of other participants, their public key, and some
secret keys which he already shared with other participants.

Every time he intercepts a message, the intruder can increase his knowledge. Indeed, if the
intercepted message is ciphered by a key known to the intruder, he can decipher it and take note of
its contents. On the other hand, if he is able to decipher the message, he will memorize the whole
ciphered message. This step makes it possible to build a powerful intruder who may extract the
maximum of information from the intercepted messages.

In addition to messages intercepted and information extracted, the intruder can forge other
messages. This capability can be represented by adding to the intruder’s knowledge data generated
from messages intercepted in combination with data already acquired. However, in order to restrict
the space of messages which can be generated by the intruder, we can exclude messages that could
not be accepted by legitimate participants in the context/transaction to validate.

Our goal is to automate the intruder’s behavior generation, starting from the trust unit’s formal
specification. By analyzing the method used in [3] to manually generate the intruder’s behavior
in order to detect a security attack on theNeedham-Shroederprotocol, we were able to construct
an EFSM for the intruder, starting from the trust units’ EFSMs. The construction of the EFSM is
described in the next section.

Copyright c� ���� . HEC Montŕeal. 12

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

The initial set of input of the intruder’s EFSM is obtained by the following two analysis steps.
We first must determine the possible set of values that each variable can take for each trust unit
process. This operation can be realized by a data flow analysis. Variables not tested in a process
can take any value, whereas variables which are tested in conditional expressions may only take
values which have been tested.

Second, we carry out a static analysis to restrict the domain of the intruder’s knowledge to the
minimum needed. In the first place, we need to determine the initial knowledge set. For example,
in the case of a transactional protocol, this set is limited to:

� the set of all participants’ public keys,

� the intruder’s private key,

� the set of participants’ digital certificates, and

� some generic data.

This set can see its contents increase when the intruder intercepts messages. The messages
the intruder can intercept during a protocol execution determine the contents it can add to his
knowledge base. If the intruder intercepts the message�m client, client�PK(intruder), it can add
the elementm client to his knowledge.

To avoid redundancy of elements learned, the intruder saves the element learned in its most
elementary form. For example, if the messagem client, clientPK(intruder)is intercepted, the
intruder process savesm client, and not the whole message, since it can be built fromm clientand
the identifierclient, which already belong to the intruder’s knowledge. In other words, the intruder
process saves the message in its most complex form only if it cannot decipher it.

Since the set of messages the intruder can intercept in an execution protocol instance is finite,
the set of messages the intruder can add to his knowledge base is also finite. Thus the intruder’s
EFSM is a finite nondeterministic automata, finite because it will have a finite Input set and non-
deterministic because there is a multitude of decisions the intruder can make when intercepting a
new knowledge element.

Let ����� �! be the set of all possible messages the intruder can intercept, and for each
message� � ����� �! , let"�����!� be the elements the intruder can learn from�.

The intruder’s knowledge may be further restricted by excluding messages which can never
be used by the intruder to generate valid messages (messages accepted by legitimate participants).
Therefore, the set of elements useful to the intruder (named#$�") can be derived from valid
messages the intruder could send to the other partcipants. For each message of this set, we have to
determine elementary data the intruder could use to build such message. Let�������%������ be
the set of elements the intruder can use to build a useful message� � #$�".

Thus, the set of elements the intruder can know and use to attack an instance of protocol exe-
cution (named�
�#���) is defined as follow:

�
�#��� �
�

����������

"�����!�

�

�������

�������%�������

Copyright c� ���� . HEC Montŕeal. 13

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

4.2 Formal intruder modelisation by an EFSM

Let �&��
�
� ��� ������� � � and �&��

�
� ���� ��

�
�� �� ��� � �� be two EFSMs that represent

processes of two participants of a context/transaction�. The two participants communicate by
message queues belonging to� and� �. Therefore, we suppose that� � � �. We derive from
�&��

�
and�&��

�
the following EFSM representing the intruder’s behavior:

Let �&��� � ���� ��
�
�� �� ��� � �� be the intruder EFSM.

� � The set of message queues the intruder can access. It must be the same as those of the two
participants. Since we suppose the communication network to be open,� � � � � � �.

�� The set of variable names that the intruder can manipulate. As the intruder’s goal is to intercept
secret elements exchanged between participants,�� is composed of two subsets:�� and��.

�� Variables initially known to the intruder.

�� Variables not yet known by the intruder and needed by the intruder to complete his
knowledge base. We have thus�� � �� � ��� 	 ��.

We generate the intruder’s EFSM in order to validate security properties of a composite trust
solution using our approach (see Sect. 3). We suppose that all�� variables are of boolean
type. They take the valuetrue if the intruder intercepts them andfalse if the intruder does
not yet know their value. We initialize variables in�� to trueand variables in�� to false.

�� There are five possible intruder states��
�
� ��

�
� ��

�
� ��

�
� ��

�
.

�� The initial state.

�� The intruder state after he initializes all�� variables.

�� The intruder state when a new element is added to the intruder knowledge.

�� The intruder state when a read operation is executable on a channel belonging to� .

�� The intruder state when a message intercepted belongs to�
�#��� .

� � Transition function defined by:

� ����
�
� �� � ��

�
. �&��� moves from state��

�
to ��

�
by performing an initialization action�.

� ����
�
� �� � ��

�
. �&��� stays in��

�
by performing a write action� on a message queue of� .

This is equivalent to an intrusion attack by identity usurpation or a message deteriora-
tion.

� ����
�
� �� � ��

�
. �&��� moves from��

�
to ��

�
by performing a testing action�.

� ����
�
� �� � ��

�
. �&��� moves from��

�
to ��

�
by performing a writing action on a message

queue.

� ����
�
� �� � ��

�
. �&��� moves from��

�
to ��

�
by performing a reading action on a message

queue of� . This is equivalent to a passive listener intruder.

� ����
�
� �� � ��

�
. �&��� moves from��

�
to ��

�
by performing a testing action. The test is exe-

cutable if the variable belongs to�
�#��� .

Copyright c� ���� . HEC Montŕeal. 14

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

� ����
�
� �� � ��

�
. �&��� moves from��

�
to ��

�
by performing a variable assignement action�,

the variable must belong to��.

5 The SecAdvise validation methodology

TheSecAdvise approach selects trust units (i.e., security mechanisms) as a solution to a specific
trust problem. The validation model we presented in the previous two sections has been developed
as one of the criteria for solution selection. Indeed, any solution selection tool must make sure that
the composition of trust units selected covers the whole risk set. In this paper, we showed how the
PROMELA formal specification language and theSPIN validation tool can be used to perform
such analysis. In order to generalize our approach to any trust solution, we introduce the following
notation:

���� the set of extended finite state machines representing the trust units in the set�. This
set establishes a link between a trust unit� � � and its EFSM representation. It formalizes
the trust unit’s specifications and makes the transition from a formal specification to a model
validation automatic.

�&��
�
� ���� is an EFSM representing trust unit�. Thus,�&��

�
� ���� and�&��

�
��

���
�&��

�
such that� � ����;

� the set of predicates associated to the set of risks�. For each risk, we associate a set of
predicates which will be used in verification. These predicates can beLTL formulae or
may use other notations. Using these predicates, we can verify if a security risk is properly
covered by one or more trust units. These verification predicates are independent of any trust
unit that can cover the risk they describe. Thus, every trust unit that covers a given risk will
be validated using the same predicates.

�� � ���� the set of predicates associated to risk�;

���
� ���� the set of predicates associated to all risks in the set�� (the set of risks to be covered
in a context/transaction�);

� � ������� the set of EFSMs describing an intruder’s behavior;

�� � � the EFSM associated with the intruder’s behavior in order to validate the set of trust units
� . This EFSM is automatically generated as described in the previous section of this paper.

Given these modifications to theSecAdvise theoretical model, we can summarize the two verifi-
cation steps proposed herein as follows:

1. the verification of every predicate in���
in every state of the automata�&�� ���

and

2. the verification of every predicate in���
in every state of the automata� ���

generated from
�&�� ���

.

The first validation step tries to verify whether a security risk� � �� is covered or not by the trust
solution suggested bySecAdvise, that is, set���, whereas the second validation step makes sure
that all risks in�� are covered by��� in the case where an intruder is present.

Copyright c� ���� . HEC Montŕeal. 15

An Automatic Validation Model for Security Mechanisms
Fathya Zemmouri, Gilbert Babin et Peter Kropf

6 Conclusions

We have formally described the automatic generation of an intruder’s behavior with the goal of
validating a given trust solution. The behavior of such an intruder must take into account the
structure of processes representing the behavior of legitimate participants. Moreover, we must
also automatically generate the whole set of the intruder’s initial assumptions. This set must then
be expanded accordingly, as the intruder intercepts and decodes messages exchanged between the
different legitimate participants, with the help of macros updating knowledge variables.

References

[1] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0. A continu-
ally updated library of protocols analysed in the literature, available at www.cs.york.ac.uk/ jac,
November 1997.

[2] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol. InInfor-
mation Processing letters, volume 56(3), pages 131–133, 1996.

[3] P. Maggi and R. Sisto. Using Spin to Verify Security Properties of Cryptographic Protocols.
In LNCS. Springer Verlag, 2002.

[4] S. Robles, S. Poslad, J. Borrell, and J. Bigham. A Practical Trust Model for Agent-Oriented
Electronic Business Applications. InProc. of the 4th Int’l Conf. on Electronic Commerce
Research (ICECR-4), volume 2, pages 397–406, Dallas, Texas, USA, November 2001.

[5] R. Saliba, G. Babin, and P. Kropf. SecAdvise : A Security Mechanism Advisor. InDistributed
Communities on the Web (DCW 2002), LNCS 2468, pages 35–40, Sydney, Australia, April
2002. Springer Verlag.

[6] F. Zemmouri. Un mod`ele de validation automatique de m´ecanismes de s´ecurisation des com-
munisations. Master’s thesis, University of Montreal, 2003.

Copyright c� ���� . HEC Montŕeal. 16

